EXAMPLE: CHAPTER 2 HOMEWORK PROBLEM

110.201 LINEAR ALGEBRA PROFESSOR RICHARD BROWN

Problem (2.1.13a). Prove the following statement: The 2 × 2 matrix $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible iff $ad - bc \neq 0$.

Strategy. This is a biconditional statement, so we have to prove the conditional statement in each direction. To do this, we will write out the system of equations $\mathbf{A}\mathbf{x} = \mathbf{y}$, and use elementary row operations to change the system to an equivalent one where the idea of \mathbf{A} being invertible is equivalent to the statement that $ad - bc \neq 0$.

Solution. We first prove the statement: If **A** is invertible, then $ad - bc \neq 0$. We prove this by proving the contrapositive: If ad - bc = 0, then **A** is not invertible. Suppose ad - bc = 0. The matrix equation $A\mathbf{x} = \mathbf{y}$ corresponds to the system

(I)
$$ax_1 + bx_2 = y_1$$

(II) $cx_1 + dx_2 = y_2$,

where we have conveniently named the equations to refer to them. By replacing equation (II) by the new equation (III) = d(I) - b(II), we obtain a system formed by equations (I) and (III) with the same solutions. We get

(I)
$$ax_1 + bx_2 = y_1$$

(III) $(ad - bc)x_1 + 0x_2 = dy_1 - by_2.$

Since we are assuming that ad - bc = 0, the last equation in this new system reduces to $0 = dy_1 - by_2$. This must be true for each and every choice of $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$. For any particular choice of \mathbf{y} , we will have either $dy_1 = by_2$, and the system will have many solutions, or $dy_1 \neq by_2$, and the system will have no solutions (it will be inconsistent). In either case, there will be no inverse linear transformation, and the matrix \mathbf{A} will not be invertible.

Now we prove the statement: If $ad - bc \neq 0$, then **A** is invertible. Given the same system as above, with the same elementary row operation, we now see that the second equation of the system

$$(ad - bc)x_2 = dy_1 - cy_2 \implies x_2 = \frac{dy_1 - by_2}{ad - bc} = \left(\frac{d}{ad - bc}\right)y_1 + \left(\frac{-b}{ad - bc}\right)y_2$$

will have a unique solution given any choice of y_1 and y_2 and knowing that $ad - bc \neq 0$. Thus there will be a unique solution $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ for any choice of \mathbf{y} . This means that \mathbf{A} will be invertible (we will be able to produce the backwards function).

And as a special note, finishing the elementary row reductions on the system we played with above will produce exactly the structure of the matrix \mathbf{A}^{-1} needed for Problem 1.1.13b.