Class 16: 10/9/13 V

The ideas of spin, linear independence, basis, coordinates a all the same in this man abstract notion of linear space and subspace. Also dimensión. E. Find a basis for R^{2×2} and determine its din. Stratesy: Like with vectors, losk for a way to write each element ar a basis element. Solchon: Any ACIR^{2×3} is $A = \begin{bmatrix} k & b & c \end{bmatrix} k \cdot b \cdot c \cdot d \cdot e \cdot f$. Elde $f \end{bmatrix} EIR.$ Here, $\begin{bmatrix} R & J & c \\ L & e \end{bmatrix} = R \begin{bmatrix} I & o & 0 \\ o & o \end{bmatrix} + J \begin{bmatrix} 0 & I & 0 \\ 0 & J \end{bmatrix} + C \begin{bmatrix} 0 & 0 & 1 \\ 0 & J \end{bmatrix}$ Hence Spen ([100], ..., [000]) = 1R^{2×3}. Bet at any of Here redundant? For example, 16 Re 11 redundet R. $\begin{aligned} e_{12} &= c_1 e_{11} + c_2 e_{13} + c_3 e_{21} + c_4 e_{22} + c_7 e_{23} \\ e_{12} &= \int_{-1}^{0} c_1 \circ c_2 \int_{-1}^{0} de_{13} de_{14} de_{14} de_{15} \\ e_{12} &= \int_{-1}^{0} c_1 \circ c_2 \int_{-1}^{0} de_{15} de_{14} de_{15} de_{15} \\ e_{13} &= \int_{-1}^{0} c_1 \circ c_2 \int_{-1}^{0} de_{15} de_{15} de_{15} de_{15} \\ e_{13} &= \int_{-1}^{0} c_1 \circ c_2 \int_{-1}^{0} de_{15} de_{15} de_{15} de_{15} \\ e_{13} &= \int_{-1}^{0} c_1 \circ c_2 \int_{-1}^{0} de_{15} de_{15} de_{15} de_{15} \\ e_{13} &= \int_{-1}^{0} c_1 \circ c_2 \int_{-1}^{0} de_{15} de_{15} de_{15} de_{15} \\ e_{13} &= \int_{-1}^{0} c_1 \circ c_2 \int_{-1}^{0} de_{15} de_{15} de_{15} de_{15} \\ e_{13} &= \int_{-1}^{0} c_1 \circ c_2 \int_{-1}^{0} de_{15} de_{15} de_{15} de_{15} \\ e_{13} &= \int_{-1}^{0} c_1 \circ c_2 \int_{-1}^{0} de_{15} de_{15} de_{15} de_{15} \\ e_{13} &= \int_{-1}^{0} c_1 \circ c_2 \int_{-1}^{0} de_{15} de_{15} de_{15} de_{15} de_{15} \\ e_{13} &= \int_{-1}^{0} c_1 \circ c_2 \int_{-1}^{0} de_{15} de_{15} de_{15} de_{15} de_{15} de_{15} de_{15} \\ e_{15} &= \int_{-1}^{0} c_1 \circ c_2 \int_{-1}^{0} de_{15} d$

VI

Some questions form Chapters 1, 2 and 3

Richard Brown

Mathematics Department

October 9, 2013

A span is

- **1** a basis for a vector space.
- 2 a finite set of vectors.
- an infinite set of vectors.
- a linear subspace.
- a set of all linear combinations of a set of vectors.

For $T : \mathbb{R}^m \to \mathbb{R}^n$, $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$,

- $2 \operatorname{im}(T) \subset \mathbb{R}^n$.
- ker $(T) \subset \mathbb{R}^m$.
- ker $(T) \subset \mathbb{R}^n$.

A basis of an n-dimensional vector space V is

- any finite set of vectors in V.
- 2) an infinite set of vectors in V.
- Solution The span of a set of vectors in V.
- any linearly independent set of vectors in V.
- **(**) any linearly independent set of vectors in V that span V.

For $T : \mathbb{R}^m \to \mathbb{R}^n$, $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$, $\operatorname{im}(A) =$

- **1** all solutions to $\mathbf{A}\mathbf{x} = \mathbf{b}, \forall \mathbf{b} \in \mathbb{R}^n$.
- **2** all solutions to Ax = 0.
- **3** all $\mathbf{b} \in \mathbb{R}^n$ where $\mathbf{A}\mathbf{x} = \mathbf{b}$ is consistent.
- all points in \mathbb{R}^m mapped to a particular $\mathbf{b} \in \mathbb{R}^n$.

True or False

- **(**) The column vectors of any 5×4 matrix must be linearly dependent.
- **②** If **A** is an invertible $n \times n$ matrix, then the kernels of **A** and **A**⁻¹ must be equal.
- **③** If the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_n$ span \mathbb{R}^4 , then *n* must be equal to 4.
- The image of a 3×4 matrix is a subspace of \mathbb{R}^4 .
- **(a)** If $\mathbf{A}^2 = \mathbf{I}_n$, then **A** must be invertible.

• The function
$$T\begin{bmatrix} x\\ y\end{bmatrix} = \begin{bmatrix} x-y\\ y-x\end{bmatrix}$$
 is a linear transformation.

- **()** if $AB = I_n$ for two matrices **A** and **B**, the **B** must be the inverse of **A**.
- **(3)** There exists a 3×4 matrix with rank 4.
- A linear system with fewer unknowns than equations must have either an infinite number of solutions or no solutions.
- A matrix E is in reduced-row echelon form. If we remove any single row, the resulting matrix will still be in reduced-row echelon form.