
110.201 LINEAR ALGEBRA

Week 2 Lecture 1 Notes

1. Matrices

Denote a matrix with its entries

An×m =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11 a12 ⋯ a1m
a21 a22 ⋯ a2m
⋮ ⋮ ⋱ ⋯

an1 an2 ⋯ anm

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Here, A has n-rows and n-columns, and these are called the dimensions of the two-dimensional
array of numbers.

By convention, we have

(1) If m = 1, A is called a (column) n-vector.
(2) If n = 1, A is called a row m-vector.
(3) If m = n = 1, A is called a scalar. Typically, we do not represent scalars as 1 × 1-

matrices. Instead, we simply treat them as (real) numbers.

Remark 1. ALL unspecified vectors are considered column vectors, by convention. This is
similar to the notion that we always specify the horizontal axis on a graph to be the x-
direction, or that numbers on the real line get larger as we move to the right. These are
merely conventions to help us understand each other’s more complicated constructions in
math. We will see why this is useful throughout this course.

Like equations, matrices have algebraic properties:

● They can be added together if they are precisely of the same dimensions.

An×m +Bn×n = Cn×m,

where the entries of C satisfy cij = aij + bij.
● They can be multiplied together iff their dimensions are compatible. This means that

An×m ⋅Bp×r = Cn×r, iff m = p.

Notice that the resulting matrix C has special dimensions depending on those of A
and B. How does one multiply matrices?

Definition 2. The dot product of a row n-vector w and a column n-vector v is
defined by

w ⋅ v = [ w1 ⋯ wn ] ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

v1
⋮

vn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=
n

∑
i=1

wivi = a scalar.
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We use this to define a matrix product above as the matrix Cn×p, with entries

cij = (row i of A) ⋅ (column j of B) .

Do check to see that the dimensions of C make sense.

Example 3. Check that this works:
⎡
⎢
⎢
⎢
⎢
⎢
⎣

2 3
−1 0

4 6

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⋅ [
1 2 −2
1 3 −3

] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2(1) + 3(1) 2(2) + 3(3) 2(−2) + 3(−3)
−1(1) + 0(1) −1(2) + 0(3) −1(−2) + 0(−3)
4(1) + 6(1) 4(2) + 6(3) 4(−2) + 6(−3)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

5 13 −13
−1 −2 2
10 26 −26

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

● Any matrix can be multiplied by a scalar (this is simply a multiplication of all of the
entries of A by the scalar.) And

kAn×m =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ka11 ka12 ⋯ ka1m
ka21 ka22 ⋯ ka2m
⋮ ⋮ ⋱ ⋯

kan1 kan2 ⋯ kanm

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, where k ∈ R.

● We will return to this later, but the addition and multiplication of matrices satisfies
(1) A(B +C) = AB = AC,
(2) For k ∈ R, k(AB) = A(kB),

at least when the multiplications and additions make sense.

You are familiar with the notion that real n-dimensional
space Rn is just the set of all ordered n-tuples of real num-
bers (x1, x2, . . . , xn), where for 1 ≤ i ≤ n, xi ∈ R. Here, we
will take a slightly different view. We will consider Rn a
vector space:

Definition 4. Real n-dimensional space Rn identifies with

the set of all (column) n-vectors

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x1

⋮

xn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= x. Hence we call

Rn =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x1

⋮

xn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∣ xi ∈ R, 1 ≤ i ≤ n

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

,

the (standard) n-dimensional (real) vector space.

Back to our system of equations in matrix form from last week:

Ax = b.
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In its most general form, this matrix equation

An×mxm×1 = bn×1

gives us a good new way to interpret a matrix An×m beyond the idea that it is a simple
bookkeeping tool for linear equations. It is a function, whose input is an m-vector and
whose output is an n-vector. This will be quite important, and leads immediately to the
definition of what kind of function to which we can associate A:

Definition 5. The function T ∶ Rm → Rn, where the output n-vector y = T (x) is called a
linear transformation if there exists an n×m matrix A such that T (x) = Ax, for all x ∈ Rm.

A couple of notes:

● Writing this as Ax = y, we again recover the matrix form of a system of m linear
equations in n unknowns. The function values y are easily computed for any input
X via standard matrix multiplication. On the other hand, given a value for y, and
find a input x which is mapped to the chosen y, means that one would need to “solve
the system, like in Chapter 1. In this system, the matrix A, which defines the linear
transformation, is just the coefficient matrix.

● we can also write the function in the following ways: Either as x
T
↦ y, or x

A
↦ y, and

it is said that “x is mapped to y by T”.
● The expression “there is”, or “there exists” is written in mathematical shorthand

“∃”. We will use this notation in the future at times.
● When the dimensions of A are equal (i.e., m− n), we call the matrix square. Square

matrices can have some special properties. For example, when A is square, the linear
transformation T (x) = Ax may have an inverse as a function.

● When m = 1, the linear transformation

T ∶ R→ Rn, T (x) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1(x)
y2(x)
⋮

yn(x)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

specifies a parameterized curve (really a line) in Rn.
● For a positive integer n, the identity matrix In is a special square matrix defined as

An×n = In =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋯

0 0 ⋯ 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Here Inx = x, ∀x ∈ Rn. (Notice that we cannot write in this instance, xIn. WHy
not?)

● The expression “for all”, or “for every” is written in mathematical shorthand “∀”.
We will also use this notation in the future at times.
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So, if a function T ∶ Rm → Rn is specified by a matrix An×n, where T (x) = Ax, then it is a
linear transformation. So what happens if you do not have the matrix A, or if you are not
sure you actually have a linnear transformation. It turns out, there is a “test” for linearity:
A function T will be linear iff it satisfies

(1) T (v +w) = T (v) + T (w), ∀v,w ∈ Rm, and
(2) T (kv) = kT (v), ∀v ∈ Rm, ∀k ∈ R.

Remark 6. The plus signs in the first condition are quite different form each other. he one
on the left is addition in Rm, while the one on the right is addition in Rn. This is kind of an
important distinction.

Remark 7. We can combine these to say that a function T is linear if the function evaluated
on a linear combination of input values, is a linear combination of function values. This
means that

T (k1v1 + k2v2 + . . . + knvn) = k1T (v1) + k2T (v2) + . . . + knT (vn), ∀ki ∈ R, vi ∈ Rm.

Example 8. Let T ∶ R→ R be defined by T (x) = 3x. Since T (kx) = 3(kx) = k(3x) = kT (x),
we know that T is linear.

Example 9. Let T ∶ R → R be defined by T (x) = x2. Since T (kx) = (kx)2 = k2x2 = k2T (x),
we know that, as long as k /= 1, T is not linear.

Example 10. Is T ∶ R→ R, where T (x) = 3x + 2 a linear function? Be very careful here!!

When T is “linear” (that is satisfies both condition above), then a matrix A will exist so
that T (x) = Ax.

Here are two useful constructions:

(I) Just like functions, one-to-one linear transformations have inverses from the range
back to the domain. Let T ∶ Rn → Rn be linear and one-to-one (don’t worry about this
now, but it will also be onto in this case). Then the inverse function T −1 will exist
and T −1 ∶ Rn → Rn will be linear. Hence it will have a matrix B, where T −1(x) = Bx.
Here, B is called the inverse matrix of A, in the sense that

(1) (T ○ T −1) (x) = A(Bx) = ABx = Inx = x = BAx = B(Ax) = (T −1 ○ T ) (x).

Example 11. Let T ∶ R2 → R2 be defined by T (x) = [
2 1
1 1

]x. Here, as a function

T has an inverse, and can be calculated. Here, we give it to you: T −1 ∶ R2 → R2 is

T −1(x) = [
1 −1

−1 2
]x.

● Check the parts of Equation 1 above, for A = [
2 1
1 1

], and B = [
1 −1
−1 2

].
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● On vectors, choose for example x = [
3
2

]. Then

T [
3
2

] = [
2 1
1 1

] [
3
2

] = [
8
5

] , and T [
8
5

] = [
1 −1
−1 2

] [
8
5

] = [
3
2

] .


