EXAMPLE: PROBLEM 2.4.30 DEFINITION OF A LIMIT

110.109 CALCULUS I (PHYS SCI & ENG) PROFESSOR RICHARD BROWN

Question 1. Show that $\lim_{x\to 2} x^2 + 2x - 7 = 1$ using the ϵ - δ definition of a limit.

Strategy: We will employ a method similar to that of Example 2.4.4 on page 114 of the text. A good method, in general, for finding a $\delta > 0$ given an $\epsilon > 0$ is to work with the given ϵ -inequality to make it look like the δ -inequality. Then the choice of δ as a function of ϵ becomes clear.

Solution: For
$$f(x) = x^2 + 2x - 7$$
 and any choice of $\epsilon > 0$, we seek a number $\delta > 0$ where
If $0 < |x - 2| < \delta$, then $|f(x) - 1| = |(x^2 + 2x - 7) - 1| = |x^2 + 2x - 8| < \epsilon$.

To calculate this δ , we manipulate the ϵ -inequality: Here

$$|f(x) - 1| = |x^2 + 2x - 8| = |x + 4||x - 2| < \epsilon.$$

To make this look like the δ -inequality, we need to find a way to replace the factor |x + 4| with a number. In essence, we need to bound it somehow (find a number surely bigger than it).

To do this, note that anywhere near the value x = 2, we know that the expression x + 4 will be near the value 6. So choose a range of input values, say 1 < x < 3, or |x - 2| < 1 so that in this range, we know 3 < x + 4 < 7. Then, as long as |x - 2| < 1, we can manipulate the ϵ -inequality to read

$$|x^{2} + 2x - 8| = |x + 4||x - 2| < 7|x - 2| < \epsilon$$

or $|x-2| < \frac{\epsilon}{7}$. This becomes our choice of $\delta = \frac{\epsilon}{7}$, at least when we are within 1 of the value x = 2. If we make this choice, then for small original choices of $\epsilon > 0$, we would have:

If
$$0 < |x-2| < \delta$$
, then $|f(x)-1| = |(x^2+2x-7)-1| = |x^2+2x-8|$
= $|x+4||x-2| < 7|x-2| < 7\delta = 7\left(\frac{\epsilon}{7}\right) = \epsilon$.

However, this will not work when we choose $\epsilon > 0$ so large that $\frac{\epsilon}{7} > 1$, because will make our choice of $\delta = \frac{\epsilon}{7} > 1$, and we will have violated our assumption above, namely that for |x - 2| < 1, we would get |x + 4| < 7. For example, say we were given $\epsilon = 14$, so that our choice of δ was $\delta = \frac{\epsilon}{7} = 2$. Then the definition of a limit would be:

If
$$0 < |x - 2| < \delta$$
, then $|f(x) - 1| = |x^2 + 2x - 8|$
= $|x + 4||x - 2| < 8|x - 2| < 8\delta = 16$

which does not work when our choice of *epsilon* was 14. The reason was that for $|x - 2| < \delta = 2$, the expression |x + 4| can large as 8, and not 7.

Date: September 26, 2011.

To fix this, not that we actually have two stipulations for δ , namely |x-2| < 1 by assumption (which a good assumption since near x = 2 this is fine), and $|x-2| < \delta = \frac{\epsilon}{7}$ which will work for small $\epsilon > 0$. Hence we can fix this completely, but making sure our choice of δ never gets large than our assumption, no matter the size of ϵ . Hence the idea that

$$\delta = \min\left\{1, \frac{\epsilon}{7}\right\}.$$

Then for large choices of $\epsilon > 0$, like 3 our $\epsilon = 14$, which makes the calculation of $\delta = \frac{\epsilon}{7} = 2$, we instead choose δ to be the smaller $\delta = 1$. Then the bound we made for |x + 4| < 7 still works, and we can say,

If
$$0 < |x-2| < \delta$$
, then $|f(x)-1| = |x^2+2x-8|$
= $|x+4||x-2| < 7|x-2| < 7\delta = 7\left(\frac{\epsilon}{7}\right) = \epsilon$.

Try this with specific numbers. You will see it works.