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Question 1. [20 points] Evaluate the following:

(a) lim
x→−∞

3x− 4x3

2x3 + 6x2
.

Solution: Really, one can appeal directly to the degree theorem for limits at infinity of rational

functions that we did in class. Indeed, noting that f(x) =
3x− 4x3

2x3 + 6x2
is a rational function, where the

degree of the numerator and the denominator are both 3. Thus, the limit at either infinity or negative
infinity is simply the ratio of the leading coefficients. This would be enough to establish that

lim
x→−∞

f(x) = lim
x→−∞

3x− 4x3

2x3 + 6x2
=
−4

2
= −2.

You could actually calculate the limit, via multiplying by the “clever form of 1”, so that

lim
x→−∞

3x− 4x3

2x3 + 6x2
= lim

x→−∞
3x− 4x3

2x3 + 6x2
·
(

1
x3

1
x3

)
= lim

x→−∞

3
x2 − 4

2 + 6
x

and appealing to the fact that

lim
x→−∞

3
x2 − 4

2 + 6
x

=
lim

x→−∞
3

x2
− 4

lim
x→−∞

2 +
6

x

=

(
lim

x→−∞
3

x2

)
− 4

2 +

(
lim

x→−∞
6

x

) =
0− 4

2 + 0
= −2.

But simply mentioning the theorem and the result will work, in this case, since we did the theorem in

class.

(b) lim
x→0

sin(4x)
−x

.

Solution: Note that this problem looks a lot like the limit at 0 of the function
sin x

x
, except for the

coefficient of x inside the sine function. To account for this distinction, consider the following change
of variable, z = 4x. This is like problem 6, Section 3.4, and like one that we did in lecture. Knowing
that as x → 0, also z → 0, we get

lim
x→0

sin(4x)

−x
= lim

z→0

sin z

− (
z
4

) =
1

− (
1
4

) ·
(

lim
z→0

sin z

z

)
= −4 · 1 = −4.
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Question 2. [20 points] Evaluate the following:

(a) lim
n→∞ an, For an =

1 + sinn

n2
.

Solution: There are actually two interesting ways to do this problem. One can appeal to the Sandwich Theorem, or pick apart
the function into pieces. Here are both:

Sandwich Theorem: Like the limit in the previous problem, this problem looks a lot like the limit at ∞ of the function
sin x

x
.

If you recall, we used the Sandwich Theorem to calculate that limit. We can use the example from the lecture as a guide here,
or we can use Problem 2, Section 3.4 as a guide also. Note that −1 ≤ sin n ≤ 1 for any natural number n. But then by adding 1
to each of the parts of this inequality,

1− 1 ≤ 1 + sin n ≤ 1 + 1,

so that 0 ≤ 1 + sin n ≤ 2 for all natural numbers n. Dividing by n2 for any positive choice of n, we get

0 =
0

n2
≤ 1 + sin n

n2
≤ 2

n2
.

This inequality allows us to use the Sandwich Theorem effectively. Since for all positive natural numbers n, the function
1 + sin n

n2

is bounded above by
2

n2
and below by 0, we know by the Sandwich Theorem that

lim
n→∞ 0 ≤ lim

n→∞
1 + sin n

n2
≤ lim

n→∞
2

n2
.

Since both the left hand and the right hand limits are 0, it follows that

lim
n→∞

1 + sin n

n2
= 0.

Other way: Notice that
1 + sin n

n2
=

1

n2
+

sin n

n2
=

1

n2
+

1

n
· sin n

n
.

Then

lim
n→∞

1 + sin n

n2
= lim

n→∞

(
1

n2
+

1

n
· sin n

n

)
=

(
lim

n→∞
1

n2

)
+

(
lim

n→∞
1

n

)
·
(

lim
n→∞

sin n

n

)
,

as long as each of the individual limits on the right-hand-side of the last equality all exist. But they all do. In fact, each one of
them is 0. The first is 0 since

lim
n→∞

1

n2
= lim

n→∞
1

n
· 1

n
=

(
lim

n→∞
1

n

)
·
(

lim
n→∞

1

n

)
= 0 · 0 = 0.

And the last limit we calculated in class. Hence all limits exist and again

lim
n→∞

1 + sin n

n2
= 0.

(b) Assuming lim
n→∞

bn exists for the recursively defined sequence

bn+1 =
5
2
bn(1− bn),

What are the only possible values for the limit (that is, what are the fixed points of {bn})?

Solution: To find the fixed points of this sequence, simply look for values where the output at any
stage n, equals the input. Thus look for the values of b that satisfy

b =
5

2
b(1− b).

Not this means that we are looking for those sequences {bn} where bn+1 = bn for all choices of n. Here

b =
5

2
b− 5

2
b2,

0 =
3

2
b− 5

2
b2,

0 =
1

2
b (3− 5b) ,

which is solved by b = 0 and b =
3

5
. These are the fixed points, and the only possible values can can

serve as a limit for a sequence {bn} that satisfies this recursion. The model for this problem is the HW

Problems 107 and 108 in Section 2.2.



please show all work, explain your reasons, and state all theorems you appeal to 3

Question 3. [8 points] Find a value of the constant c so that the function f(x) is continuous at
x = 2, where

f(x) =
{

x2 + cx + 1 x < 2
8
x2 x ≥ 2 .

Solution: Note that the two functions defining f(x) here are continuous on their respective domains. One
piece is a rational function, continuous on the closed interval [2,∞), and the other is a polynomial for any
choice of c on the interval (−∞,−2). In fact, we can make the polynomial continuous on (−∞, 2] by assigning
it the value of the lower-side limit at 2. In this case, this is

lim
x→2−

f(x) = lim
x→2−

x2 + cx + 1 = 22 + 2c + 1 = 5 + 2c

for a choice of c. Hence it remains only to find a value of c so that the above limit equals the actual current

function value at 2: f(2) =
8

22
= 2. To this end, we solve 5 + 2c = 2, so that c = −3

2
. This problem is a lot

like the HW Problem 28 in Section 3.2.
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Question 4. [8 points] Show h(x) = x7 + 5x3 − 1 has a root in the interval [0, 1].

Solution: This problem is an immediate and quick use of the Intermediate Value Theorem (IVT). The
function h(x) is a polynomial so is continuous on the domain [0, 1]. At the end points of the interval, we
have

h(0) = 07 + 5 · 03 − 1 = −1 < 0,

h(1) = 17 + 5 · 13 − 1 = 5 > 0.

Since h is continuous, and h(0) < 0 < h(1), it follows by the IVT that there exists a value c ∈ (0, 1), where

h(c) = 0. This value c is a root of the polynomial h(x). See Problem 2 of the HW in Section 3.5.
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Question 5. [16 points] Let f(x) =
√

x2 + 6x

3x
. Do the following:

(a) Find the domain of f .

Solution: The function f(x) will be continuous as long as the denominator is not 0 and the expression
under the radical is non-negative. To this end, you can solve for these points separately. First, x = 0
cannot be in the domain of this function, since the denominator is 0 here. Second, only valid domain
points will solve the inequality

x2 + 6x ≥ 0.

But this factors quickly in to the pieces

x(x + 6) ≥ 0.

This last inequality is solved by all x, where x ≥ 0 and x ≤ −6. Putting these two calculations together,
we get

the domain of f(x) =

{
x ∈ R | x ≤ −6 or x > 0

}
.

(b) Calculate f ′(x).

Solution: A good way to start is to recognize that this is a quotient of two functions. Hence, the
quotient rule will work here, and

f ′(x) =
d

dx

(√
x2 + 6x

3x

)
=

(
d

dx

√
x2 + 6x

) · 3x−√x2 + 6x · ( d
dx

3x
)

(3x)2
.

This works fine, except that the first derivative you will have to take is that of a composite function,
and hence the chain rule is needed. Let g(x) =

√
x and h(x) = x2 + 6x. Then

(g ◦ h) (x) = g (h(x)) = g
(
x2 + 6x

)
=

√
x2 + 6x.

And
d

dx

√
x2 + 6x =

d

dx
[g (h(x))] = g′ (h(x)) · h′(x) =

1

2
√

x2 + 6x
· (2x + 6) =

2x + 6

2
√

x2 + 6x
.

Now throw this into the above calculation (and calculate the derivative of 3x also) to get

f ′(x) =

(
2x+6

2
√

x2+6x

)
· 3x−√x2 + 6x · (3)

(3x)2
.

Best to stop at this point and not simplify.
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Question 6. [18 points] Let g(x) = 2x2 − 3. Do the following:

(a) Use the definition of the derivative to show that g′(2) = 8.

Solution: Let’s just follow the two main definitions: Either

g′(2) = lim
x→2

g(x)− g(2)

x− 2
= lim

x→2

2x2 − 3− 5

x− 2
= lim

x→2

2x2 − 8

x− 2
= lim

x→2

2(x2 − 4)

x− 2

= lim
x→2

2(x + 2)(x− 2)

x− 2
= lim

x→2
2(x + 2),

where we can cancel out the common factor (x− 2) in the fraction. What is left is continuous at x = 2,
hence g′(2) = 2 · 4 = 8. Or

g′(2) = lim
h→0

g(2 + h)− g(2)

h
= lim

h→0

2(2 + h)2 − 3− 5

h
= lim

h→0

2(22 + 4h + h2)− 8

h

= lim
h→0

8h− 2h2

h
= lim

h→0

h(8− 2h)

h
= lim

h→0
8− 2h = 8.

Or

g′(x) = lim
h→0

g(x + h)− g(x)

h
= lim

h→0

2(x + h)2 − 3− (2x2 − 3)

h
= lim

h→0

2(x2 + 2xh + h2)− 2x2 + 3

h

= lim
h→0

4xh− 2h2

h
= lim

h→0

h(4x− 2h)

h
= lim

h→0
4x− 2h = 4x,

and since we seek the derivative at x = 2, we get g′(2) = 4 · 2 = 8. Any of these will work. We did a

problem much like this in class.

(b) Find the equation of the line tangent to g(x) at x = 2.

Solution: The formula for the tangent line to g(x) at x = 2 is

y − g(2) = g′(2)(x− 2).

Here, g(2) = 5 and g′(2) = 8. So

y − 5 = 8(x− 2).

(c) For f(x) =
1√
x

, find (g ◦ f) (x) and specify its domain.

Solution: Here

(g ◦ f) (x) = g (f(x)) = g

(
1√
x

)

where g(x) = 2x2 − 3. So

(g ◦ f) (x) = 2

(
1√
x

)2

− 3 =
2

x
− 3,

but there is really no need to simplify the function to the last step. The domain is most easily seen

without the simplification. The domain for the inside function f is x > 0, and since the outside function

g(x) is defined for all input values, it follows that the domain for (g ◦ f) (x) is also all x > 0. We have

done a number of these in class, and HW Problem 16, Section 1.2 is very close to this one.
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Question 7. [10 points] Do exactly ONE of the following:

(a) Find the slope of the line tangent to the curve given by the equation y2 = x2 + xy at the point
(−1, 0).

Solution: Since the equation ties together the variables x and y, we can view y as an implicit function
of x. Then both sides of the equation may be thought of as functions of x. Since they are equal, their
derivatives will be equal also, and

d

dx

[
y2] =

d

dx

[
x2 + xy

]

2y
dy

dx
= 2x + 1 · y + x · dy

dx
= 2x + y + x

dy

dx
.

Solving for dy
dx

, we get
dy

dx
=

2x + y

2y − x
.

Evaluated at the point (−1, 0), we get

dy

dx

∣∣∣∣x=−1
y=0

=
2x + y

2y − x

∣∣∣∣x=−1
y=0

=
2(−1) + 0

2(0)− (−1)
= −2.

Number 58, Section 4.4 in your HW is a good example of this type of problem. Special note: There is

a problem with this problem as stated. can you see it?

(b) The volume of a spherical balloon is V =
4
3
πr3 where the radius r is measured in centimeters.

If the volume is expanding at a constant rate of 100 cm3

sec , how fast is the radius expanding
when the radius is exactly 10 cm?

Solution: Due to the equation relating volume and radius, if one variable is changing in time, so is the
other. Since the volume is changing at a constant rate, the function V (t) is differentiable, and hence
so it r(t). And since the two sides of the volume equation are equal, so are their derivatives, and

dV

dt
=

d

dt

(
4

3
πr3

)
=

4

3
π

(
3r2) dr

dt
.

We know that at the point where r(t) = 10 cm,
dV

dt
= 100

cm3

sec
, so

100 =
4

3
π

(
3(10)2

) · dr

dt
,

and hence
dr

dt
=

1

4π

cm

sec
. HW Problem 70 of Section 4.4 is a more involved version of this type of

problem.


