
110.108 CALCULUS I

Week 5 Lecture Notes: September 26 - September 30

1. Lecture 3: The Chain Rule

It should be obvious now that the derivative of a product of functions is NOT the product of the
derivatives. However, there is a construction involving two functions where the derivative IS the
product of the functions. This happens when the construction is the composition of two functions,
and the rule governing the derivative of a composition is called the Chain Rule:

Definition 1. Let g be a function differentiable at a point x = a and f a function differentiable
at the point g(a). The the function F = f ◦ g is differentiable at x = a, and

F ′(x) =
d

dx
[f(g(x))]

∣∣∣∣
x=a

= f ′(g(x))g′(x).

Notes:

• The derivative of a composition IS the product of the derivatives, but there is a twist; the
derivative of the outside function is evaluated at the inside function value, so it is not simply
the product of the two individual function evaluated at x.

• In Leibniz notation, let y = f(u) and u = g(x) (so that we can recover y = f(g(x))). Then
the Chain Rule can be expressed as a product

dy

dx
=

dy

du
· du
dx

,

and at the point x = a,

dy

dx

∣∣∣∣
x=a

=
dy

du

∣∣∣∣
u=g(a)

· du
dx

∣∣∣∣
x=a

.

Notice that in the first general expression, the derivative looks like a standard product, but
in the second expression one can more easily see that the first derivative in the product is
actually evaluated at u = g(a) and not simply a.

• So what is the idea of the proof? In general, the proof of this formula will take some work.
However, in a specific case, we can at least see how the formula comes out.

partial proof idea. Suppose that we have a composition of functions of the form f(g(x)), where g(x)
is differentiable at x = a and f(x) is differentiable at g(a). Then if the derivative of f(g(x)) exists
at x = a, we would have

d

dx
[f(g(x))]

∣∣∣∣
x=a

= lim
x→a

f(g(x))− f(g(a))

x− a
.

In general, working with this limit will be difficult. However, let’s make an extra restriction on the
kinds of functions we allow for now: Let assume that, near x = a, we have that g(x) is not equal to
g(a) (except at a, of course). This is not a huge restriction, but it makes the proof not usable for
ANY function. That doesn’t matter, though, as I am only interested in demonstrating the formula
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using the derivative definition. Under the assumption, we can readily alter the derivative definition
by a clever form of 1:

d

dx
[f(g(x))]

∣∣∣∣
x=a

= lim
x→a

f(g(x))− f(g(a))

x− a

= lim
x→a

f(g(x))− f(g(a))

x− a

(
g(x)− g(a)

g(x)− g(a)

)
= lim

x→a

f(g(x))− f(g(a))

g(x)− g(a)

(
g(x)− g(a)

x− a

)
=

(
lim
x→a

f(g(x))− f(g(a))

g(x)− g(a)

)(
lim
x→a

g(x)− g(a)

x− a

)
at least when these limits both exist. Notice immediately that the second limit DOES exist, and
is just the definition of g′(a). The first, however, is a bit trickier.

Recall that g(x) is differentiable at x = a. Thus it is continuous at a, and so lim
x→a

g(x) = g(a)

implies that lim
x→a

g(x)− g(a) = 0. Hence as x → a, we have g(x) → g(a). Thus

lim
x→a

f(g(x))− f(g(a))

g(x)− g(a)
= lim

g(x)→g(a)

f(g(x))− f(g(a))

g(x)− g(a)
= f ′(g(a))

exists. Thus the formula works the way it does because of the structure of the definition of a limit,
and

d

dx
[f(g(x))]

∣∣∣∣
x=a

=

(
lim

g(x)→g(a)

f(g(x))− f(g(a))

g(x)− g(a)

)(
lim
x→a

g(x)− g(a)

x− a

)
= f ′(g(a))g′(a).

�

Example 2. For h(x) =
1

x2 + 1
, find h′(x).

First, we do not need the Chain Rule for this calculation. h(x) is a rational function, and we
can simply use the Quotient Rule. Here

h′(x) =
d

dx

[
1

x2 + 1

]
=

d
dx [1] (x

2 + 1)− (1) d
dx

[
x2 + 1

]
(x2 + 1)2

=
0− 2x

(x2 + 1)2
=

−2x

(x2 + 1)2
.

However, if we rewrite h(x) = (x2 + 1)−1 instead, then it looks like h(x) is the composition of the
power function f(x) = x−1 and the quadratic function g(x) = x2+1. Hence, using the Chain Rule,
with f ′(x) = −x−2, and g′(x) = 2x, we get

h′(x) =
d

dx

[
(x2 + 1)−1

]
=

d

dx
[f(g(x))] = f ′(g(x))g′(x) = −(x2 + 1)−2(2x) =

−2

(x2 + 1)2
.

Notice that the result is the same either way. This is no accident and is true even if the two
calculations resulted in two functions that do not look like each other. This is because when two
functions are equal, their graphs are equal. When two functions have the same graph, then the
collection of slopes of tangent lines must also be equal. Put this together to say that when two
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functions are equal, their derivative MUST be equal. In other words, the derivative of a function
is unique. This will be important later when we begin to integrate.

Example 3. Let h(x) = sin ex.

Let f(x) = sinx, and g(x) = ex. Then f ′(x) = cosx, f ′(g(x) = cos ex, and g′(x) = ex. And so

h′(x) =
d

dx
[f(g(x))] = f ′(g(x))g′(x) = (cos ex) ex = ex cos ex.

Example 4. Let i(x) = esinx2
.

Here, we have actually three functions nested together, and can denote them f(x) = ex, g(x) =
sinx, and h(x) = x2. Then i(x) = f (g (h(x))). Finding the derivative of this function, however, is
still very straightforward: Simply treat the two inner functions (g(x) and h(x)) as a single function
during the first application of the Chain Rule. The re-apply the Chain Rule to these two functions:
Indeed,

i′(x) =
d

dx
[f (g (h(x)))] = f ′ (g (h(x)))

d

dx
[g (h(x))]

= f ′ (g (h(x)))
(
g′ (h(x))h′(x)

)
= f ′ (g (h(x))) g′ (h(x))h′(x).

One final note here: When using the Chain Rule, always differentiate from the outside in. This
may be why it is called the Chain Rule. The derivative of a nested set of functions is a chain of
derivatives of the functions. It is a product, but each function is evaluated at the value of the
remaining function in the chain.

Example 5. Let g(x) = ax, where a > 0, and a ̸= 1.

Here, we previous calculated that g′(x) = d
dx [a

x] = axg′(0), althou9gh we had no way to actually
calculate the derivative at x = 0. We “measured” it, but really, this is insufficient. However, recall
the identity give by a function and its inverse: Let f(x) = ex. Then f−1(x) = lnx, and(

f ◦ f−1
)
(x) = elnx = x = ln ex =

(
f−1 ◦ f

)
(x).

This allows us to differentiate g(x) by first rewriting it using this last set of identities: g(x) = ax =
eln ax = ex ln a, so

g′(x) =
d

dx
[ax] =

d

dx

[
ex ln a

]
= ex ln a · (ln a) = ax ln a.

Hence, we have found two things: a way to calculate the derivative of a general exponential function,
and what the derivative of that function is at x = 0. As a last note, recall when a = e, that the
derivative at x = 0 was 1. With this new calculation, we get

d

dx
[ex] = ex ln e = ex(1) = ex.


