SPRING 2008: 110.211 HONORS MULTIVARIABLE CALCULUS

Example of the use of differential forms

Example 0.1. Let M = {(a:,y, 2€R3 | z= /22 + yQ} be the northern hemisphere of the unit sphere in

R3, and w = 22 dz A dy be a 2-form on R3. Calculate w.
M

Solution: Via the parameterization ¢(r,0) = (rcosf,rsinf,v/1 —r2), ¢ takes the rectangle
D={(r6)eR*|0<r<1,0<6<2r}

in the rectilinear (r,6)-space onto M. We can calculate directly using forms:
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Note that the tangent vectors are vectors in R? even though we are integrating w across a
surface. You should think of the tangent vectors as begin in a sort of cylindrical coordinates
on R?. Note also that the coefficient of w along the surface can also be written in (r,6), as
22 =1-r2 Now
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Note, one can associate to any 2-form on R? a vector field by using the function coefficients.
Under this association, the vector field F = (Fy, F», F5) = (0,0,22) corresponds to w. As an
exercise, perform the same calculation by evaluating the vector surface integral

// F.dS
M

in the more classical way, by using the same parameterization. You will get the same answer.

Indeed,
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which is the same as Equation 0.2, and the rest follows as above.
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