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Abstract. Given a word W in the free group on 2 letters F2, Horowitz showed

that the special linear character of W is an integer polynomial in the 3 char-
acters of the basic words of F2. Special linear characters are defined via the

trace of their representations, and the polynomial character of an arbitrary W

can be found by application of certain “trace relations”, which allow one to
write the character of a complicated word as a sum of products of the char-

acters of simpler words. Even in the n = 2 case, where the polynomial is

uniquely defined, this procedure can be difficult and tedious. In this note, we
use the structure of a free group word in F2 to compute the degree and the

leading monomial of its SL(2, C)-character without actually computing the
full polynomial.

======== To appear in Geometriae Dedicata ========

1. Introduction

For the free group on n generators, Fn, the set of all characters of special linear
representations of Fn is a closed affine subset of C2n−1, whose coordinates are given
by the Horowitz generating set: the characters of special linear representations of
a set of 2n − 1 basic words in Fn (See Horowitz [8]).

The character of a word W ∈ Fn is the complex-valued function on the set of all
representations of Fn,

w : Hom(Fn, SL(2,C))→ C, w(ρ) = tr ρ(W ),

where “tr” means the standard trace for special linear matrices (for words in F2

we will use upper case letters and their lower case version for characters). It was
proposed by Fricke and Klein [5] and proved by Horowitz [8] that for any W ∈ Fn,
w can be written as an integer polynomial in these Horowitz generators. Horowitz
also established that the polynomial is unique up to some ideal, which is trivial for
n = 2. While this result illustrates the algebraic nature of free group characters, the
actual calculation of the character of an arbitrary free group word as a polynomial
in the characters of a base set is tedious at best and quite difficult for long words,
involving a delicate application of “trace relations” central to the study of the
invariants of products of 2×2 matrices (a la Procesi [12]). In this paper, we exploit
the characteristics of W ∈ F2 to calculate the polynomial degree of its special linear
character. Moreover, this computation reveals explicitly the leading monomial of
the character.

Indeed, for W ∈ F2 = 〈X,Y 〉, the character w is an integer polynomial in the
characters x = trX, y = trY , and z = trXY . One can normalize W within
its character class (the set of words in Fn that have the same character) through
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a process of cyclic reduction, cyclic permutation, and/or inversion, so that the
character class of W is represented by a word of the form

(1.1) W = XW1Y W2 · · ·XWn−1Y Wn , W1 > 0.

Here each Wi, i = 1, . . . , n, is a non-zero integer, n is either 1 or even, and we regard
each letter with its corresponding exponent as a syllable (Compare Horowitz [8]).
This form was used by Horowitz [8] to study nonconjugate representatives within
SL(2,C)-character classes of F2. This form also appears in the study of primitive
elements of F2 and what bases actually look like (see Cohen, et.al [4]). W is a
minimal length representative within its character class, and is uniquely defined
within a character class up to cyclic permutation and possibly inversion (See, for
instance, Haralick, et.al [7]). The number of syllables in W , denoted s`(W ), as well
as the number of distinct maximal negative subwords ξW are quantities independent
of the choice of normalized representative of W . Call deg(w) the polynomial degree
of w ∈ Z[x, y, z]. Horowitz noticed that when n = 1, the degree of the character of
(for example) W = XW1 is W1, as w has the structure of a Chebyshev polynomial
of the second kind in x (see below). Our main results herein show that a complete
description of the highest degree term of the character of any W ∈ F2 is easily
computed using a normalized representative W :

Theorem 1.1. Suppose W ∈ F2 has a normalized representative of the form W =
XW1Y W2 · · ·XWn−1Y Wn with syllable length at least two. Then

deg(w) =
s`(W )

2
+ ξW +

n∑
i=1

(|Wi| − 1) .

Furthermore, w has a unique monomial of largest total degree.

Denote by εi(w) the total exponent of the variable i ∈ {x, y, z} in the leading
monomial of w for W ∈ F2. Then the calculation of the total multidegree of w
also reveals the exponents of each of the constituent coordinates x, y, and z in this
leading monomial. We also show the following:

Theorem 1.2. Suppose W ∈ F2 has a normalized representative of the form W =
XW1Y W2 · · ·XWn−1Y Wn with syllable length at least two. For 1 ≤ i ≤ n− 1, define

ri =
{

1 (−1)n−1Wi > 0 and WiWi+1 > 0
0 otherwise.

Then

εx(w) =

n
2∑

i=1

|W2i−1| −
n−1∑
i=1

ri, εy(w) =

n
2∑

i=1

|W2i| −
n−1∑
i=1

ri, and εz(w) =
n−1∑
i=1

ri.

In particular,
s`(W )

2
− ξW =

n−1∑
i=1

ri.

In the study of the automorphisms of the character variety of Fn induced by
the automorphisms of Fn, the inner automorphisms (those induced by conjugation
within Fn), act trivially on characters. Hence there is an action of the outer auto-
morphism group of Fn, Out(Fn), on the character variety. For n ≤ 3, this action
is evidently by polynomial automorphisms on the affine space C2n−1 in which the
character variety can be embedded (the Out(Fn)-action on characters does not in
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general lift to this ambient affine space, although individual elements do lift to
polynomial automorphisms. See, for instance, McCool [10]). The dynamics of this
action is of current interest, particularly when F2 (and F3) is isomorphic to the
fundamental group of a compact surface (See Brown [1] and [2], Goldman [6], and
Previte and Xia [11], for examples and details). Dynamical information such as
the algebraic entropy (or the related dynamical degree) of this Out(F2) action on
C3 relies on the growth in the degrees of the coordinate polynomials of the auto-
morphisms under iteration. These coordinate polynomials are the characters of the
basic words upon iteration of the automorphism. In Brown [1], we use the results
of this paper to calculate the algebraic entropy of individual elements of Out(F2)
as the asymptotic growth factor of the degrees of the coordinate polynomials of
the automorphisms under iteration. This information is related to the topological
entropy of the action on appropriate subvarieties of the character variety of F2.

The paper is organized as follows: In Section 2, we discuss some preliminaries and
establish notation for the paper. In Section 3, we show that the total multidegree of
the character of a free group word is roughly dependent on the size of a normalized
representative, where the size is defined using a triple of data. We then establish
Theorem 1.1. In Section 4, we extend the total degree calculation to construct the
leading monomial of the character, and prove Theorem 1.2. Unfortunately, due
mainly to the fact that the ideal of polynomials in the basic characters that vanish
on characters is not trivial for n > 2, this technique does not generalize readily to
a computation of the leading monomial (and hence the degree) of the character of
W ∈ Fn, n > 2. In Section 5, we discuss some of the reasons why the techniques of
this paper fail for n > 2 and provide examples.

The author would like to thank the reviewer of the article for very detailed and
constructive comments regarding both the content and the structure of this paper
during the reviewing process. The finished product has indeed been enhanced
greatly by these suggestions.

2. Preliminaries

2.1. The trace relation. Employ the notation that a capital letter denote a free
group word, and the small case version denote its corresponding special linear
character. For words written as combinations of words, W = UV , this notation
may be inconvenient, as in general trUV 6= trUtrV . Hence, we also denote the
character of W ∈ Fn by 〈W 〉, so that for W ∈ F2,

w = trW = 〈W 〉 ∈ Z[x, y, z],

where x = 〈X〉, y = 〈Y 〉, and z = 〈XY 〉 are the Horowitz generators (See [8]).
A fundamental “trace” relation can be constructed for 2× 2 matrices with unit

determinant: Any A ∈ SL(2,C) solves the Cayley-Hamilton form of its own char-
acteristic polynomial,

(2.1) A2 − (trA)A+ I = 0,

where I is the 2× 2 identity matrix. Multiplication on the left or right of A by any
other matrix B doesn’t alter the solution set:

(2.2) B
(
A2 − (trA)A+ I

)
A−1 = BA− (trA)B +BA−1 = 0.
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Moreover, since this is simply a sum of matrices, this equation can be solved on the
level of each matrix entry. Thus the trace form of Equation (2.2)

trBA− trAtrB + trBA−1 = 0

holds, which is more familiarly written as

trBA = trBtrA− trBA−1,

or in the notation of this paper

(2.3) 〈BA〉 = 〈B〉〈A〉 − 〈BA−1〉.
Many (more complex) trace relations can be derived from this, and it is known

that all come from this relation (see Brunfiel-Hilden [3]). In fact, the ideal of
polynomials in the Horowitz generators which vanish identically for all special linear
characters of Fn is generated by Equation (2.2) (see [9]).

Example 2.1. Let W = XYX. Then

w = 〈W 〉 = 〈XYX〉
= 〈XY 〉〈X〉 − 〈XYX−1〉
= 〈XY 〉〈X〉 − 〈Y 〉 = xz − y.

Example 2.2. Let W = XX. Then

w = 〈W 〉 = 〈XX〉
= 〈X〉〈X〉 − 〈XX−1〉
= 〈X〉2 − 〈e〉 = x2 − 2.

Example 2.3. Let W = XYX−1Y −1. Then

w = 〈W 〉 = 〈XYX−1Y −1〉
= 〈XYX−1〉〈Y 〉 − 〈XYX−1Y 〉
= 〈Y 〉2 −

(
〈XY 〉〈X−1Y 〉 − 〈XX〉

)
= 〈Y 〉2 − 〈XY 〉 (〈X〉〈Y 〉 − 〈XY 〉) +

(
〈X〉2 − 2

)
= −xyz + x2 + y2 + z2 − 2.

By observation, it is recognizable that a general procedure for calculating 〈W 〉
for arbitrary W ∈ Fn even for the case n = 2 is available, but can be difficult and
tedious for words of large length.

2.2. Chebyshev recursion. Example 2.2 above is of particular import. Horowitz
applied the trace relation

(2.4) trUV = trUtrV − trUV −1

to the word Um = Um−1U , m > 1, to get

trUm = trUm−1trU − trUm−2.

Denoting trUm = Tm(u), Horowitz recognized Tm(u) as a Chebyshev polynomial
of the second kind in the variable u = trU which satisfies the recursion

(2.5) Tm(u) = u · Tm−1(u)− Tm−2(u),

where
T0(u) = 2 and T1(u) = u.
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In fact, since trU−1 = trU , it follows that for any m ∈ Z,

T|m|(u) = trUm.

Directly from this fact we see that deg (Tm(u)) = m · deg(u), and in particular

(2.6) deg〈Xm〉 = deg〈Y m〉 = deg〈(XY )m〉 = |m| .

The properties of Chebyshev polynomials of this type, like the fact that the parity
of m determines the parity of the polynomial, will be useful in the discussion to
follow.

2.3. Normalized free group words. As stated in the introduction, when dis-
cussing the special linear character of a free group word, we are free to alter the
word via the processes of cyclic reduction, cyclic permutation and/or inversion,
to change the representative of the character class which will be better suited for
study. The process of finding a “good” word representative within a character class
will be called normalization, and we will call the class representative a normalized
word.

Let W ∈ F2. Then, within its character class, a normalized form is

(2.7) W = XW1Y W2 · · ·XWn−1Y Wn , W1 > 0.

W is not unique, although it is cyclically reduced and hence of minimal word-length
within its conjugacy class. Note that, as long as W is not a nontrivial power of
a single generator, n is always even. Also, one might need to invert W to satisfy
the condition that W1 > 0. This normalized form was used by Horowitz [8] to
determine non conjugate words in F2 which have the same character. This form
also shows up in the classification of bases of F2 (See Cohen. et.al [4]).

3. The total multi-degree of a character

In this section, we exploit the structure of W to calculate the total multi-degree
of the character of W ∈ F2 as an element of Z[x, y, z]. For words W such that
s`(W ) = 1, where W is simply a positive power of a single generator, Equation (2.6)
immediately implies deg(w) = W1. Presently, we generalize this degree calculation
for W corresponding to arbitrary W ∈ F2.

3.1. Positive normalized words. It seems intuitive that the degree of the char-
acter of W ∈ F2 is roughly proportional to the “size” of its cyclically reduced word
length. While this is true in general, it is especially true in the case where the
normalized word has all positive exponents. For a normalized word W ∈ F2, a sub-
word (not necessarily proper) is called positive if all of its exponents are positive.
Similarly for a negative subword, although negative subwords of W are necessarily
proper. A negative subword is called maximal negative if it is negative and if its
adjacent letters in W , including wraparound, are positive subwords.

For arbitrary W ∈ F2, denote the size of W by the triple(
n,m = max

i
{|Wi|}, r = #{j| |Wj | = m}

)
.

This notion of size orders normalized words lexicographically. Note that r is always
an integer between 1 and n, but that when m = 1, r = n.
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Lemma 3.1. Suppose W ∈ F2 has a positive, normalized representative W with
syllable length at least two; that is, W = XW1Y W2 · · ·XWn−1Y Wn , where n ≥ 2
and each Wi > 0. Then

deg(w) =
s`(W )

2
+

n∑
i=1

(Wi − 1) .

Furthermore, w has a unique monomial of largest total degree.

Proof. Consider the special case that W has size (n, 1, n). Then

W = XY · · ·XY = (XY )
n
2 .

Hence, consistent with the notation from above using Z = XY , 〈W 〉 = 〈Z n
2 〉 =

Tn
2

(z) is a second Chebyshev polynomial in z = trXY , and deg〈W 〉 = n
2 satisfies

the lemma. Note also that w has a unique leading monomial here.
Using this as a base case, we prove the lemma using induction on the size of

W . Indeed, suppose the size of W is (n,m, r), where m > 1 and assume that the
lemma holds for all normalized positive words of size less that W . Through a cyclic
permutation, we can assume that the last syllable has Wn = maxi{Wi} (we will
assume here that the last syllable consists of the letter Y . The argument will follow
directly with an exchange of the letters X and Y should the last letter be an X).
Then we can write W = UY and

U = XW1Y W2 · · ·XWn−1Y Wn−1.

Using the basic trace formula, Equation (2.3), we have

(3.1) 〈W 〉 = 〈U〉〈Y 〉 − 〈UY −1〉.

Since W is positive, the size of U is necessarily smaller than that of W . Indeed,
the size of U is either (n,m, r− 1) if r > 1, or (n,m− 1, t) if r = 1, where t is some
integer between 1 and n. Hence by induction

deg〈U〉 =
n

2
+

n∑
i=1

(Wi − 1)− 1.

As for the deg〈UY −1〉, let Wn > 2. Then UY −1 also has either less maximal
exponents (an equal m and a smaller r) or a smaller maximal exponent m. Thus,
in this case, the size of UY −1 is also smaller than that of W . And if Wn = 2, then
UY −1 is not normalized, and UY −1 has syllable length strictly less than n, and
hence is of smaller size than W . Hence, again by induction

deg〈UY −1〉 =
{

n
2 +

∑n
i=1 (Wi − 1)− 1 if Wn = 2

n
2 +

∑n
i=1 (Wi − 1)− 2 otherwise .

Note in the special case n = 2, Wn = 2, the deg〈UY −1〉 = W1, in line with the
discussion at the beginning of this section and Equation (2.6).

Lastly, in these calculations, deg〈UY −1〉 < deg(〈U〉〈Y −1〉). Thus we can induc-
tively conclude that w will satisfy the lemma and have a unique leading monomial
(inherited from 〈U〉〈Y 〉). �
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3.2. General normalized words. Due to the presence of the Horowitz generator
〈XY 〉 = z, the incidence of the subword Z = XY ⊂ W will be important to the
calculation of the degree of 〈W 〉. In turn, we may detect copies of Z ∈ W via the
presence of negative subwords in W . To start, recall that ξW denotes the number
of distinct, maximal negative subwords in a normalized representative of W .

Remark 3.2. It is important to note here two aspects of the quantity ξW . First, the
restriction that a normalized word W have positive first exponent eliminates the
chance of a wraparound effect creating an ambiguity in the magnitude of ξW . For
example, W = X−1Y XY −1 is not normalized. A normalized form for W would be
XY −1X−1Y . Here, ξW = 1. Second, including wraparound, there is exactly the
same number of maximal negative subwords in any choice ofW as there are maximal
positive subwords. Hence neither cyclic permutation nor inversion will change the
value of ξW . For this reason, we leave the bar notation off of the subscript here.

Theorem 1.1. Suppose W ∈ F2 has a normalized representative of the form W =
XW1Y W2 · · ·XWn−1Y Wn with syllable length at least two. Then

deg(w) =
s`(W )

2
+ ξW +

n∑
i=1

(|Wi| − 1) .

Furthermore, w has a unique monomial of largest total degree.

Proof. We prove this inductively on the number of negative subwords. The ξW = 0
case is covered by Lemma 3.1. So let ξW > 0 and assume that the theorem holds for
every word whose normalization has at most ξW − 1 maximal negative subwords.
Write W = UV T , where (1) V is a maximal negative word with s`(V ) = m > 0,
and (2) T and U are words of syllable lengths k ≥ 0 (T may be trivial here, so that
k = 0. We will assume that it is not) and l > 0, respectively. Note that the last
letter of U and the first letter of T necessarily have positive exponent, and that
k + l +m = n. Then ξW = ξU + ξT + 1.

Under the trace relation

(3.2) 〈W 〉 = 〈UV T 〉 = 〈TUV 〉 = 〈TU〉〈V 〉 − 〈TUV −1〉,

ξTU = ξTUV −1 = ξW − 1 and ξV = 0 (any normalization of V is positive). So by
assumption the degree formula holds for them. To calculate deg(w), consider two
cases.

Case 1: m odd. Then V starts and ends with the same letter, so s`(V ) = m− 1.
If we assume that V starts and ends with the letter X (this is equivalent to assuming
that l is even), then a normalized representative for V is the positive word V =
X−(V1+Vm)Y −Vm−1 · · ·X−V3Y −V2 .

Remark 3.3. An entirely parallel situation arises when V starts and ends with the
letter Y . This is equivalent to assuming that l is odd. This leads to a choice of V
with one set of combined exponents at the end. We omit this analogous case here
for brevity. However, we will refer to this case at points in the proof where it seems
relevant to note the difference from the developed case.
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Using this V we have by Lemma 3.1,

deg〈V 〉 =
s`(V )

2
+ (|V1 + Vm| − 1) +

m−1∑
i=2

(|Vi| − 1)

=
m− 1

2
+ 1 +

m∑
i=1

(|Vi| − 1)

=
m+ 1

2
+

m∑
i=1

(|Vi| − 1).

Now the syllable length of TU in this case is also odd, so that s`(TU) = k + l− 1.
Note that the instance of TU will be slightly different depending on the parity of
l, but in either case will have one set of combined exponents which will be additive
due to the fact that the first exponent of U and the last exponent of T are positive
as subwords of W . Via an analogous calculation to that above for deg〈V 〉, but
applying the inductive hypothesis instead of Lemma 3.1, we have

deg〈TU〉 =
k + l + 1

2
+ ξTU +

k∑
i=1

(|Ti| − 1) +
l∑

i=1

(|Ui| − 1).

Combining these two, we get

deg (〈TU〉〈V 〉) = deg〈TU〉+ deg〈V 〉

=
k + l +m

2
+ 1 + ξTU +

k∑
i=1

(|Ti| − 1) +
l∑

i=1

(|Ui| − 1) +
m∑

i=1

(|Vi| − 1)(3.3)

=
s`(W )

2
+ ξW +

n∑
i=1

(|Wi| − 1).

In contrast, TUV −1 is either already normalized, or will be under a cyclic per-
mutation. And since ξTUV −1 = ξW − 1, by induction the degree calculation holds,
and

deg〈TUV −1〉 =
s`(TUV −1)

2
+ ξTUV −1 +

s∑
i=1

(|Ti|−1) +
r∑

i=1

(|Ui|−1) +
m∑

i=1

(|Vi|−1).

Comparing this last equation with Equation (3.3), we see that deg〈TUV −1〉 <
deg (〈TU〉〈V 〉). Hence, in this case, deg(w) = deg (〈TU〉〈V 〉), the polynomial
〈TU〉〈V 〉 contributes the unique leading monomial, and the degree formula holds
for W .

Case 2: m even. Here both TU and V are normalized after only a possible cyclic
permutation, so s`(TU) = k + l and we can use the degree formula directly:

deg〈TU〉 =
k + l

2
+ ξTU +

k∑
i=1

(|Ti| − 1) +
l∑

i=1

(|Ui| − 1)

deg〈V 〉 =
m

2
+

m∑
i=1

(|Vi| − 1)
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so that

(3.4) deg (〈TU〉〈V 〉) =
k + l +m

2
+ξTU +

k∑
i=1

(|Ti|−1)+
l∑

i=1

(|Ui|−1)+
m∑

i=1

(|Vi|−1).

However, in this case TUV −1 is not normalized. Normalizing will combine the
exponents of the first letter of T , T1 (necessarily positive) with the last letter of
V −1, −V1 > 0, and the last letter of U , Ul (also positive) with the first letter of
V −1, −Vm > 0. Again with ξTUV −1 = ξW − 1, we have

deg〈TUV −1〉 =
s`(TUV −1)

2
+ ξTUV −1 + (|T1 − V1| − 1) + (|Ul − Vm| − 1)

+
k∑

i=2

(|Ti| − 1) +
l−1∑
i=1

(|Ui| − 1) +
m−1∑
i=2

(|Vi| − 1)

=
k + l +m− 2

2
+ ξTUV −1 + 2 +

k∑
i=1

(|Ti| − 1) +
l∑

i=1

(|Ui| − 1)(3.5)

+
m∑

i=1

(|Vi| − 1)

=
k + l +m

2
+ ξTUV −1 + 1 +

n∑
i=1

(|Wi| − 1)

=
s`(W )

2
+ ξW +

n∑
i=1

(|Wi| − 1).

In this case, comparing Equations (3.4) and (3.5), we get

deg〈TUV −1〉 > deg (〈TU〉〈V 〉) ,

so that deg〈TUV −1〉 = deg(w), 〈TUV −1〉 contributes the unique leading monomial
to w and the result holds. �

4. Exponent counts of the leading monomial

From the previous section, we see that for any W ∈ F2 with a normalization
W = XW1Y W2 · · ·XWn−1Y Wn , n ≥ 2, the polynomial degree of w is computed to
be

deg〈W 〉 =
s`(W )

2
+ ξW +

n∑
i=1

(|Wi| − 1) .

In this section, we consolidate this information into a different form which exposes
not only the degree of 〈W 〉 but also its leading monomial.
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Notice that

deg〈W 〉 =
s`(W )

2
+ ξW +

n∑
i=1

(|Wi| − 1)

=
s`(W )

2
+ ξW +

n∑
i=1

|Wi| − n

=
n∑

i=1

|Wi|+ ξW −
s`(W )

2

=
n∑

i=1

|Wi| −
(
s`(W )

2
− ξW

)
.(4.1)

The last term is a measure of how often the subwords XY or (XY )−1 = Y −1X−1

appear in W . Since 〈XY 〉 = z, this will ultimately determine the presence and
the exponent of the variable z in the leading monomial of 〈W 〉 ∈ Z[x, y, z]. The
exponents of the variables x and y will be recorded in the respective exponents Wi

once we account for the z variable. Recall, for i = x, y, z, the value εi(w) is the
exponent of the variable i in the leading monomial of w.

Lemma 4.1. Suppose W ∈ F2 has a positive, normalized representative of the form
W = XW1Y W2 · · ·XWn−1Y Wn with syllable length at least two. Then

εx(w) =

n
2∑

i=1

W2i−1 −
n

2
, εy(w) =

n
2∑

i=1

W2i −
n

2
, and εz(w) =

n

2
.

Proof. In the case where the size of W is (n, 1, n), w = Tn
2

(z), and hence by
Equation (2.6) the lemma holds and εx(w) = εy(w) = 0. So assume that W has
size (n,m, r) with m > 1. By a cyclic permutation moving the letter with the largest
exponent to the end of the word (and we assume here again as in Lemma 3.1 that
the letter is a Y ), write W = UY . Also as in Lemma 3.1, assume the result holds for
all words of size less than (n,m, r). Then using the basic trace formula, the leading
monomial of 〈W 〉 is the product of the leading monomial of 〈U〉 and y (see the degree
calculations of the proof of the lemma). Here U = XW1Y W2 · · ·XWn−1Y Wn−1, is
of a smaller size than W and εx(u) = εx(w), εz(u) = εz(w), and εy(u) = εy(w)− 1.
Thus the result holds. �

Example 4.2. Let W = XYXYXY = (XY )3. In this case,
3∑

i=1

W2i−1 =
3∑

i=1

W2i =
s`(W )

2
= 3, and ξW = 0.

Here s`(W )
2 − ξW = 3, deg(w) = 3, and εx(w) = εy(w) = 0. The character of W is

w = 〈W 〉 = T3(z) = z3 − 3z,

and the variable z is the only variable represented in the leading monomial.

In fact, the term s`(W )
2 − ξW may be calculated in another way: Record the

occurrence of either the positive subword XY or the negative subword Y −1X−1 in
the ith position of W by letting ri = ri(W ) = 1 when either of these two conditions
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holds in the ith and (i+ 1)th positions and zero otherwise. As we will see, the sum
total of the ri’s is s`(W )

2 − ξW .

Remark 4.3. The criterion that a normalized W start with the letter X and a
positive first exponent means that the sum total of the ri’s will be well defined for
any choice of W .

Theorem 1.2. Suppose W ∈ F2 has a normalized representative of the form W =
XW1Y W2 · · ·XWn−1Y Wn with syllable length at least two. For 1 ≤ i ≤ n− 1, define

ri =
{

1 (−1)n−1Wi > 0 and WiWi+1 > 0
0 otherwise.

Then

εx(w) =

n
2∑

i=1

|W2i−1| −
n−1∑
i=1

ri, εy(w) =

n
2∑

i=1

|W2i| −
n−1∑
i=1

ri, and εz(w) =
n−1∑
i=1

ri.

In particular,
s`(W )

2
− ξW =

n−1∑
i=1

ri.

Proof. As in the proof of Theorem 1.1, we again prove this theorem by induction
on ξW . For the case ξW = 0, W is positive, and ri = 0 if and only if i is even. Thus
by Lemma 4.1 the theorem holds. So assume that the theorem holds for all words
with the number of maximal negative words is less than ξW . As in Theorem 1.1,
let W = UV T , where V is a maximal negative subword, with s`(V ) = m > 0,
s`(U) = l > 0, and s`(T ) = k ≥ 0. We will follow the same convention as in the
proof of Theorem 1.1: Under Equation (3.2), we will calculate the degrees of 〈TU〉,
〈V 〉, and 〈TUV −1〉 using the exponents of U , V and T and divide the analysis into
two cases depending on the parity of m.

Case 1: m odd. Assume that V starts and ends with an instance of the letter
X (i.e., let l be even: the analogous argument for V starting with a Y will again
be omitted here, but referred to in the discussion. See Remark 3.3). Then, we can
write

(4.2) W = UV T = (XU1Y U2 · · ·XUl−1Y Ul)(XV1Y U2 · · ·XVm)(Y T1 · · ·Y Tk).

By Case 1 of the proof of Theorem 1.1, 〈W 〉 inherits its leading monomial from
〈TU〉〈V 〉 via the basic trace formula. Here a normalized representative of V is the
positive word

V = X−(V1+Vm)Y −Vm−1 · · ·X−V3Y −V2 ,

and by Lemma 4.1,

εx(v) =

m+1
2∑

i=1

|V2i−1| −
m− 1

2
, εy(v) =

m−1
2∑

i=1

|V2i| −
m− 1

2
, and εz(v) =

m− 1
2

.
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In the case where V starts with the letter Y , the expressions for εx(v) and εy(v)
are interchanged. And since Vj = Wl+j , we have

εx(v) =

m+1
2∑

i=1

|Wl+2i−1| −
m− 1

2
=

l+m+1
2∑

i= l
2+1

|W2i−1| −
m− 1

2
,

εy(v) =

m−1
2∑

i=1

|Wl+2i| −
m− 1

2
=

l+m−1
2∑

i= l
2+1

|W2i| −
m− 1

2
,

εz(v) =
m− 1

2
=

l+m−1∑
i=l+1

ri(W ).

Now TU is also not normalized, but a normal representative is the reduced word
representing UT ,

(4.3) TU = XU1Y U2 · · ·XUl−1Y Ul+T1XT2 · · ·XTk−1Y Tk .

Note here that Ul > 0 and T1 ≥ 0 (and greater than 0 when T is nontrivial), since
V is a maximal negative subword of W . Also note that ξTU = ξW − 1, so by
assumption the theorem holds in this case, and

εx(〈TU〉) =

k−1
2∑

i=1

|T2i|+
l
2∑

i=1

|U2i−1| −
k+l−2∑

i=1

ri(TU),

εy(〈TU〉) = |Tk|+

k−1
2∑

i=1

|T2i−1|+
l
2∑

i=1

|U2i| −
k+l−2∑

i=1

ri(TU),

=

k+1
2∑

i=1

|T2i−1|+
l
2∑

i=1

|U2i| −
k+l−2∑

i=1

ri(TU),

εz(〈TU〉) =
k+l−2∑

i=1

ri(TU).(4.4)

Here we have included notation expressing the dependence of the ri’s on TU . Using
Equation (4.2), Ti = Wl+m+i for 1 ≤ i ≤ k, Ui = Wi, for 1 ≤ i ≤ l, and l+m is odd.
It follows from the inspection of Equations (4.2) and (4.3) that ri(TU) = ri(W )
for 1 ≤ i ≤ l − 1 and r(l−1)+i(TU) = r(l+m)+i(W ) for 1 ≤ i ≤ k − 1. In particular,
since Ul > 0 and T1 ≥ 0 by hypothesis, rl(TU) = rl+m+1(W ) = 0. Then

εx(〈TU〉) =

k
2∑

i=1

|Wl+m+2i|+
l
2∑

i=1

|W2i−1| −

(
l−1∑
i=1

ri(W ) +
l+m+k−1∑
i=l+m+1

ri(W )

)
,

εy(〈TU〉) =

k
2∑

i=1

|Wl+m+2i−1|+
l
2∑

i=1

|W2i| −

(
l−1∑
i=1

ri(W ) +
l+m+k−1∑
i=l+m+1

ri(W )

)
,

εz(〈TU〉) =
l−1∑
i=1

ri(W ) +
l+m+k−1∑
i=l+m+1

ri(W ).
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Combining these calculations, we get

εz(w) = εz(〈TU〉〈V 〉) = εz(〈TU〉) + εz(v)

=
l−1∑
i=1

ri(W ) +
l+m−1∑
i=l+1

ri(W ) +
l+m+k−1∑
i=l+m+1

ri(W ) =
l+m+k−1∑

i=1

ri(W )(4.5)

since rl(W ) = rl+m(W ) = 0, again because T1, and Ul are positive.
And as for the other two variables, we get

εx(w) = εx(〈TU〉)− εz(v)

=

k
2∑

i=1

|Wl+m+2i|+
l
2∑

i=1

|W2i−1|+

l+m+1
2∑

i= l
2+1

|W2i−1| −
l+m+k−1∑

i=1

ri(W )

=

l+m+k
2∑

i= l+m+1
2 +1

|W2i−1|+
l
2∑

i=1

|W2i−1|+

l+m+1
2∑

i= l
2+1

|W2i−1| −
l+m+k−1∑

i=1

ri(W )

=

l+m+k
2∑

i=1

|W2i−1| −
l+m+k−1∑

i=1

ri(W )

and a similar result for εy(w).
And finally for this case, note that s`(W ) = s`(V )+s`(TU)+2, and ξW = ξTU +1

(and ξV = 0). Hence Equation (4.5) and the inductive hypothesis imply that

l+m+k−1∑
i=1

ri(W ) =
(
s`(TU)

2
− ξTU

)
+
(
s`(V )

2
− ξV

)
=

s`(W )− 2
2

− (ξW − 1) =
s`(W )

2
− ξW .

We re-note here (as in the beginning of this case) that we made the additional
assumption that l was even. In the case that l is odd, similar calculations would
yield an interchange of the expressions for εx(〈TU〉) and εy(〈TU〉). We leave these
to the reader.

Case 2: m even. Then, by the basic trace formula, 〈W 〉 and 〈TUV −1〉 share the
same leading monomial. Here TUV −1 is not normalized, and a normal representa-
tive is (compare Equation (4.3)) either

(4.6) TUV −1 = XU1Y U2 · · ·XUl−1Y Ul−VmX−Vm−1 · · ·Y −V2X−V1+T1Y T2 · · ·Y Tk ,

or

TUV −1 = XU1Y U2 · · ·Y Ul−1XUl−VmY −Vm−1 · · ·X−V2Y −V1+T1XT2 · · ·Y Tk ,

depending on whether l is even or odd, respectively. Again, we will treat the former
in detail and note the latter in passing. For clarity, in this case, note that

W = UV T = XU1Y U2 · · ·XUl−1Y UlXV1 · · ·Y VmXT1 · · ·Y Tk .

Also note that ξTUV −1 = ξW − 1, so by induction the theorem applies to TUV −1,
and we can calculate directly using the result. To start, using the normalized form
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given in Equation (4.6),

εz(〈TUV −1〉) =
l+m+k−3∑

i=1

ri(TUV −1)

=
l−1∑
i=1

ri(TUV −1) +
l+m−2∑

i=l

ri(TUV −1) +
l+m+k−3∑
i=l+m−1

ri(TUV −1).(4.7)

Now U , V , T and W are all normalized. Since the first l − 1 syllables of TUV −1

are identical to those of U and W , and Ul and Ul − Vm are positive, the first term
in Equation (4.7) is precisely

l−1∑
i=1

ri(TUV −1) =
l−1∑
i=1

ri(U) =
l−1∑
i=1

ri(W ).

In the last term, all letters and exponents in the range of the index, save the first,
correspond to those of the subword T . And since T1 and −V1 +T1 are each positive,
we have

l+m+k−3∑
i=l+m−1

ri(TUV −1) =
(l+m−2)+k−1∑
i=(l+m−2)+1

ri(TUV −1)

=
k−1∑
i=1

ri(T ) =
k−1∑
i=1

rl+m+i(W ) =
l+m+k−1∑
i=l+m+1

ri(W ).

And for the middle term, note that

r(l−1)+i(TUV −1) = r(l+m)−i(W ) = rm−i(V )

for i = 1, . . . ,m− 1. Hence

l+m−2∑
i=l

ri(TUV −1) =
(l−1)+m−1∑
i=(l−1)+1

ri(TUV −1)

=
m−1∑
i=1

rm−i(V ) =
m−1∑
i=1

r(l+m)−i(W ) =
l+m−1∑
i=l+1

ri(W ).

Combining these terms, we get
l+m+k−3∑

i=1

ri(TUV −1) =
l−1∑
i=1

ri(W ) +
l+m−1∑
i=l+1

ri(W ) +
l+m+k−1∑
i=l+m+1

ri(W )

=
l+m+k−1∑

i=1

ri(W )− (rl + rl+m) .

But since both of these extra terms are 0, we have

εz(w) = εz(〈TUV −1〉) =
l+m+k−1∑

i=1

ri(W ).

And since every exponent of W in this case is present in TUV −1 (this is true for
l both odd and even, though we did not write down the form for W for the case
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where l is odd) and the combined exponents are all additive, the forms for εx(w)
and εy(w) involve no clarifying descriptions; Indeed,

εx(w) = εx(〈TUV −1〉) = εx(〈UV −1T 〉)

=

l
2∑

i=1

|U2i−1|+

l+m
2∑

i=l+1

|V2i−1|+

l+m+k
2∑

i=l+m+1

|T2i−1| −
l+m+k−3∑

i=1

ri(UV −1T )

=

l+m+k
2∑

i=1

|W2i−1| −
l+m+k−1∑

i=l

ri(W )

with a similar expression for εy(w).
And finally, note that

l+m+k−3∑
i=1

ri(TUV −1) =
s`(TUV −1)

2
− ξTUV −1 =

s`(W )− 2
2

− (ξW − 1)

=
s`(W )

2
− ξW =

l+m+k−1∑
i=1

ri(W ).

�

Example 4.4. Let W = XY −1XY −1XY −1. Here

εz(w) =
5∑

i=1

ri = 0,

so the leading monomial consists of the variables x and y. And since

εx(w) =
3∑

i−1

|W2i−1| = 3 =
3∑

i−1

|W2i| = εy(w),

we have deg(w) = 6, and the leading monomial of w is x3y3. A straightforward
calculation using the basic trace formula reveals

w = (xy − z)3 − 3(xy − z).

Example 4.5. Let W = X2Y 3X−2Y −1X−2Y 2. Here r1 = r4 = 1 and the rest are
0. Essentially, now, we can decompose W as follows:

(4.8) εx(w) =
3∑

i=1

|W2i−1| −
5∑

i=1

ri = 2 + 2 + 2− 2 = 4.

Continuing the calculation, we obtain the leading monomial to be x4y4z2 and
deg(w) = 10. The actual character is

w = −2 + x2 + 4y2 + x2y2 − x4y2 − y4 − 4x2y4 + x4y4 + x2y6

+2xyz − 4x3yz + x5yz − xy3z + 6x3y3z − x5y3z − 2x3y5z

−x2y2z2 − x4y2z2 + x2y4z2 + x4y4z2 + x3yz3 − x3y3z3.
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5. The general case

The techniques of calculation in this paper do not easily generalize to higher
rank free groups. In this section, we describe an interpretation of Theorem 1.2 in
terms of an alternate presentation of F2, which allows the leading monomial of a
character to be “read off” from a normalized representative. Then we detail some
of the problems inherent in attempting to extend these results to free groups of
higher rank.

Example 5.1. In Example 4.5, W = X2Y 3X−2Y −1X−2Y 2. Decompose W as
follows:

(5.1) W = X(XY )Y 2X−2(XY )−1X−1Y 2 = XZY 2X−2Z−1X−1Y 2,

where Z = XY corresponds to the Horowitz generator z. Then, by simply summing
the absolute values of the corresponding exponents of each of the basic words, we
again arrive at a leading monomial of x4y4z2, and deg〈W 〉 = 10.

An analogous procedure produces the leading monomial of the character of any
word in F2. Make the process in Example 5.1 explicit by considering the redundant
presentation via a Tietze transformation of F2 given by

F̂2 = 〈X,Y, Z|Z = XY 〉.

The generating set for F̂2 here has characters that correspond precisely to the
Horowitz generators of F2. Any normalized W ∈ F2 will have a unique minimal
length representative Ŵ ∈ F̂2. Each occurrence of the generator Z in a normalized
representative of Ŵ corresponds to some ri = 1, and results in a decrement of the
sum of the exponents for each of the generators X and Y . Hence in this formulation,
the exponents of the variables in the leading monomial are easily calculated without
regard to negative subwords or syllable lengths.

However, constructing a redundant presentation of Fn, n > 2, so that the gen-
erators of F̂n correspond to the Horowitz generators of characters of words in Fn

is more problematic. For one, minimal length representatives in F̂n of words in Fn

are not unique in general. Let F3 = 〈X,Y, Z〉 and consider

F̂3 = 〈X,Y, Z,A,B,C,D|A = XY,B = XZ,C = Y Z,D = XY Z = AZ = XC〉.
In this redundant presentation the generating set corresponds to the 7 Horowitz
generators for characters of F3:

{〈X〉, 〈Y 〉, 〈Z〉, 〈XY 〉, 〈XZ〉, 〈Y Z〉, 〈XY Z〉} = {x, y, z, a, b, c, d}.

Example 5.2. Let W = Y −1Z ∈ F3.

Ŵ = Y −1Z and Ŵ = Y −1X−1XZ = A−1B.

Both versions of Ŵ are of length 2. The character of Ŵ is the same regardless of
which minimal length word is chosen (using the basic trace formula once directly
on 〈AB−1〉 = ab − 〈AB〉 is not enough, since 〈AB〉 is not a Horowitz generator.
Here

〈W 〉 = 〈Ŵ 〉 = 〈Y 〉〈Z〉 − 〈Y Z〉 = yz − c.

Furthermore, even in the case where a unique minimal length representative in
F̂3 exists, its form may not readily indicate either the leading monomial or even
the degree of w:
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Example 5.3. Let W = XZX−1Y −1. In F̂3, a minimal length representative of
W is Ŵ = BX−1Y −1. While this would predict a degree 3 character, we have

〈W 〉 = 〈XZ〉〈XY 〉 − 〈XZYX〉
= 〈XZ〉〈XY 〉 − 〈ZY X〉〈X〉+ 〈Y Z〉.

ZY X is not basic, and it is known (See Magnus [9], for example)

〈ZY X〉 = 〈X〉〈Y Z〉+ 〈Y 〉〈XZ〉+ 〈Z〉〈XY 〉 − 〈X〉〈Y 〉〈Z〉 − 〈XY Z〉,

so that

〈W 〉 = ab− x(xc+ yb+ za− xyz − d) + c

= x2yz − x2c− xyb− xza+ xd+ ab+ c

is of degree 4.

The last two examples do show a pattern in the original W and the leading
monomial of w. However, as the following examples will show, this is not true in
general.

A bigger problem arises in the lack of a unique monomial of highest total degree
for characters of Fn, n ≥ 3. The ring of SL(2,C)-characters of Fn is a quotient
ring of the ring of integer polynomials in the 2n−1 Horowitz generators by an ideal
In which is principal for n = 3 (and trivial for n < 3; see, for example, Fricke and
Klein [5] or Magnus [9]), and whose “size” grows rapidly with n. Due to the presence
of this ideal, the degree of a character class is not well defined. Intuitively, one can
choose the smallest total degree among the coset representatives of a character, but
it is not clear that this representative will be unique, so that the exponent counts
of the leading monomial is still not well defined over the class.

Moreover, as the final two examples illustrate, many F3-characters have multiple
monomials of equal highest total multidegree:

Example 5.4. Let W = X2Y Z3Y −1X−1Y Z2. Then

Ŵ = X(XY Z)Z2(XY )−1(Y Z)Z = XDZ2A−1CZ.

Here, as in the F̂2 case of Example 5.1, and unlike Examples 5.2 and 5.3, the
minimal length representative of W in F̂3 does correctly indicate a highest total
degree monomial in w. The full polynomial is

w = xz3acd− xyz3d2 + xyz2ad− xz2a2c+ xz3bd+ yz3cd

−z3ac2 + xyzd2 − xz2ab− xzacd− x2z2d+ yz2ac+ yz2b

−y2z2d− z3bc− xyad− xzbd+ xz2c+ xa2c− yzcd+ zac2

+xab+ x2d− yac+ y2d+ zbc− xc− yb+ za− d

and one of the highest total degree monomials in w is xz3acd which can be “read”
from Ŵ .

However, here there are two monomials of total degree 7. This means that the
leading monomial will ultimately depend on a chosen monomial ordering of the
characters of the Horowitz generators. Given that I3 is generated by the single
polynomial

p3 = xyzd− xya− xzb− xcd− yzc− ybd− zad
+abc+ x2 + y2 + z2 + a2 + b2 + c2 + d2 − 4,
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the representative of the same coset of this character in I3 given by

w + (z2d)p3

does have a unique leading monomial of degree 7, namely xz3acd.

However, it appears that this cannot be done in general.

Example 5.5. Let W = XYX−1Z−1. Then

〈W 〉 = 〈XY 〉〈XZ〉 − 〈XY ZX〉
= 〈XY 〉〈XZ〉 − 〈XY Z〉〈X〉+ 〈Y Z〉
= xd− ab+ c.

There is no coset representative of this character with a unique monomial of total
degree 2.
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