Math 645, Fall 2017: Assignment \#9

Due: Thursday, December 7th

Problem \#1. Prove Wirtinger's inequality: If $f:[0, \pi] \rightarrow \mathbb{R}$ is C^{2} and satisfies $f(0)=f(\pi)=0$, then

$$
\int_{0}^{\pi} f^{2} d t \leq \int_{0}^{\pi}\left(f^{\prime}\right)^{2} d t
$$

with equality if and only if $f(t)=c \sin (t)$ where $c \in \mathbb{R}$. Hint: Use Fourier series or the calculus of variations.
Problem \#2. Let M be a complete simply connected Riemannian manifold. For each $p \in M$, denote by $\operatorname{conj}(p)$, the set of first conjugate points of p (i.e., for each $v \in T_{p} M$ with $v \neq 0$, consider the first conjugate point of the geodesic $\left.c_{v}(s)=\exp _{p}(s v)\right)$.
a) Show that if $p^{\prime} \in \operatorname{conj}(p)$ satisfies $d_{g}\left(p, p^{\prime}\right)=L$, then there is a unit speed geodesic $\gamma:[0, L] \rightarrow M$ connecting p to p^{\prime}, so that there is a non-trivial Jacobi field J along γ so $J(0)=J(L)=0$, and $I(J, J)=0$.
b) If for each $p \in M, \operatorname{conj}(p)$ consists of one point p^{\prime} with $d_{g}\left(p, p^{\prime}\right)=d_{g}(p, \operatorname{conj}(p))=\pi$ and the sectional curvature of M satisfies $0<\delta \leq K \leq 1$, then M is isometric to $\left(\mathbb{S}^{n}, g^{S}\right)$. Hint: Consider the geodesic, γ, and Jacobi field, J, from part a), using the Jacobi equation, the index property of J and the previous problem conclude that along the geodesic γ one has $K\left(\gamma^{\prime}, J\right)=1$, where $K\left(\gamma^{\prime}, J\right)$ is the sectional curvature of the two plane spanned by γ^{\prime} and J.

Problem \#3. Let (M, g) be a Riemannian manifold. Let $\Omega \subset M$ be an open domain which is strongly convex (i.e. for every two points $p, q \in \Omega$ there is a minimizing geodesic contained in Ω connecting p to q) and so that $\partial \Omega$ is a smooth submanifold.
a) Show that the second fundamental form Π^{N} of $N=\partial \Omega$ with respect ot the outward pointing normal to Ω is non-negative in that $\Pi_{p}^{N}(v, v) \geq 0$ for all $v \in T_{p} \partial \Omega$ and $p \in \partial \Omega$.
b) The domain Ω in M is convex if $\partial \Omega$ is a submanifold curve whose whose second fundamental form with respect to the outward pointing normal to Ω is non-negative. Show by example that a domain may be convex but fail to be strongly convex.

Problem \#4. Show that if $M \subset \mathbb{R}^{n+1}$ is a compact hypersurface (i.e., a codimension one submanifold), then there is a point $p \in M$ so that the second fundamental form of M is strictly positive (with respect to some choice of unit normal). Hint: Consider the smallest euclidean ball centered at the origin containing M.

Problem $\# 5$. Show that there can be no C^{2} ismoetric embedding

$$
f:\left(\mathbb{T}^{2}, g^{T}\right) \rightarrow\left(\mathbb{R}^{3}, g^{E}\right)
$$

Hint: Use the previous exercise.

