Math 645, Fall 2017: Assignment \#8

Due: Tuesday, November 14th

Problem \#1. Let $\phi \in C^{\infty}([0, L))$ satisfy $\phi>0, \phi^{(2 k)}(0)=0$ for all $k \geq 0$ (i.e., the derivatives of ϕ at 0 behave like those of an odd function) and $\phi^{\prime}(0)=1$ and consider the warped product metric $\left(M^{\prime}, g^{\prime}\right)=\left((0, L) \times \mathbb{S}^{n}, g^{E} \times_{\phi} g^{S}\right)$.
a) Show that there is a $n+1$ dimensional Riemannian manifold (M, g) and an isometric embedding $f: M^{\prime} \rightarrow M$ so that $\lim _{r_{i} \rightarrow 0} f\left(r_{i}, v_{i}\right)=p_{0} \in M$ exists and $f\left(M^{\prime}\right)=M \backslash\left\{p_{0}\right\}$.
b) Determine what the geodesics emanating from p_{0} correspond to in M^{\prime}.
c) Compute the sectional curvatures of (M, g) in terms of ϕ. (Hint: The Jacobi equation along geodesics emanating from p_{0} - treat p_{0} separately).)

Problem \#2. Let (M, g) be a complete Riemannian manifold of dimension n with non-positive curvature. Let X be a Killing vector field on M.
a) Show that if X has two distinct zeros, then X must vanish on any geodesic joining the two zeros. (Hint: Use last weeks homework.)
b) (Bonus): Show that when $n=2$, if X admits two distinct zeros, then it must vanish identically. (Hint: Use the identity from Homework 3 and the result from last week)
c) (Bonus): Show by example that X may have two distinct zeros but not vanish identically when $n \geq 3$.

Problem \#3. Fix a manifold M. Two metrics g and h on M are conformal provided there is a function $u \in C^{\infty}(M)$ so that $h=e^{2 u} g$.
a) If D^{h} is the Levi-Civita connection of h and D^{g} is the Levi-Civita connection of g show that for any $X, Y \in \mathcal{X}(M)$

$$
D_{X}^{h} Y=D_{X}^{g} Y+(X \cdot u) Y+(Y \cdot u) X-g(X, Y) \nabla_{g} u
$$

Here $\nabla_{g} u$ is the g-gradient of u. (Hint: use compatibility with the metric).
b) Use this formula to determine the geodesics of the upper half-plane model of hyperbolic space. Recall, this is the Riemannian manifold $\left(\mathbb{H}^{n}, g^{H}\right)$ where $\mathbb{H}^{n}=\left\{x^{n}>0\right\} \subset \mathbb{R}^{n}$ and with metric $g^{H}=\left(x^{n}\right)^{-2} g^{E}$.

Problem \#4. Given two Riemannian manifolds (M, g) and (N, h) we say a map $f: M \rightarrow N$ is conformal if $f^{*} h$ is conformal to g.
a) Show that the map $f: U \rightarrow \mathbb{R}^{n}$ where $U \subset \mathbb{R}^{n}$ given by

$$
f(x)=p_{0}+\frac{\lambda A\left(x-p_{1}\right)}{\left|x-p_{1}\right|^{\epsilon}}
$$

is conformal from $\left(U, g^{E}\right)$ to $\left(\mathbb{R}^{n}, g^{E}\right)$ when $\lambda>0, p_{0} \in \mathbb{R}^{n}, p_{1} \in \mathbb{R}^{n} \backslash U, \epsilon=0,2$ and $A \in O(n)$. That is compositions of translation, rotation, homothetic scaling and "inversion" are conformal.
b) Use complex analysis to give a conformal map not of this form when $n=2$.
c) (Bonus): Show that when $n \geq 3$ the only conformal maps are those found in a). This is called Liouville's theorem.

Problem \#5. Show that if $\left(\mathbb{R}^{2}, g\right)$ is a complete Riemannian manifold, then

$$
\lim _{r \rightarrow \infty} \inf _{\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2} \geq r^{2}} S\left(x^{1}, x^{2}\right) \leq 0
$$

Here $\left(x^{1}, x^{2}\right)$ are the standard coordinates on \mathbb{R}^{2} and $S\left(x^{1}, x^{2}\right)$ is the scalar curvature at the point $\left(x^{1}, x^{2}\right)$.

