## Math 645, Fall 2017: Assignment \#5

## Due: Thursday, October 19th

Problem \#1. Let $(M, g)$ be a Riemannian manifold and $p \in M$. Suppose that $\left(x^{1}, \ldots, x^{n}\right)$ are geodesic normal coordinates at $p$ (so $x^{i}(p)=0$ ). Show that in these coordinates metric $g$ satisfies the estimate

$$
\left|g_{i j}(q)-\delta_{i j}\right| \leq C_{1} r^{2}(q)
$$

where $q$ is near $p$ and $C_{1}>0$ depends on $g$. Here

$$
r(p)=\sqrt{\left(x^{1}(p)\right)^{2}+\ldots+\left(x^{n}(p)\right)^{2}}
$$

is the euclidean distance to the origin in the coordinate chart. That is, in geodesic normal coordinates the euclidean metric approximates the metric $g$ to first order.

Problem \#2. Let $(M, g)$ be a Riemannian manifold and $p \in M$. Use the preceding result to show that for $r>0$ sufficiently small

$$
\left|\operatorname{Vol}_{g}\left(\mathcal{B}_{r}(p)\right)-\omega_{n} r^{n}\right| \leq C_{2} r^{n+2}
$$

Here $\mathcal{B}_{r}(p)$ is the geodesic ball of radius $r, \omega_{n}$ is the volume of the unit ball in $\mathbb{R}^{n}$ and $C_{2}>0$ depends on $g$. You should use the fact that $\operatorname{det}\left(I_{n}+s A\right)=1+s \operatorname{tr} A+O\left(s^{2}\right)$.

Problem \#3. Consider $\left(\mathbb{S}^{n}, g^{S}\right)$. Arguing geometrically, show that if $n \geq 2$, then for all $r>0$

$$
\operatorname{Vol}_{g^{S}}\left(\mathcal{B}_{r}(p)\right)<\omega_{n} r^{n}
$$

What happens when $n=1$ ?
Problem \#4. Let $(M, g)$ and $(N, h)$ be Riemannian manifolds. Show that if $\phi: M \rightarrow N$ is a Riemannian isometry (i.e., it is a diffeomorphism and $\phi^{*} h=g$ ), then it is a metric isometry (i.e., $d_{h}(\phi(p), \phi(q))=d_{g}(p, q)$.

Problem \#5. Let $(M, g)$ be a complete non-compact Riemannian manifold. Prove that for each $p \in M$, there is a ray $\gamma:[0, \infty) \rightarrow M$ starting from $p$. That is, $\gamma(0)=p$ and $\gamma$ is a minimal geodesic.

