Math 645, Fall 2017: Assignment \#4

Due: Thursday, October 12th

Problem \#1. Fix a Riemannian manifold and a piece-wise C^{1} curve $c:[a, b] \rightarrow M$. Let $P_{t}^{c}(v) \in T_{c(t)} M$ be the parallel transport of $v \in T_{c(a)} M$ to $T_{c(t)} M$ along c.
a) Show that the map $P_{t}^{c}: T_{c(a)} M \rightarrow T_{c(t)} M$ is a linear isometry between the inner product spaces $\left(T_{c(a)} M, g_{c(a)}\right)$ and $\left(T_{c(t)} M, g_{c(t)}\right)$.
b) For a fixed $p \in M$, let

$$
\operatorname{Hol}_{p}=\left\{L: T_{p} M \rightarrow T_{p} M: L=P_{c(b)}^{c}, c:[a, b] \rightarrow M, c(a)=c(b)=p\right\} .
$$

Show that Hol_{p} is a subgroup of $O\left(T_{p} M, g_{p}\right)$, the set of linear isometries of $\left(T_{p} M, g_{p}\right)$. For this reason it is called the holonomy group. (Hint: consider the natural group structure on the space of curves starting and ending at p).
c) What are the holonomy groups at each point of $\left(\mathbb{R}^{n}, g^{E}\right)$?

Problem \#2.

a) Determine the holonomy group at each point of $\left(\mathbb{S}^{2}, g^{S}\right)$.
b) Determine the holonomy group at each point of $\left(\mathbb{R P}^{2}, g\right)$ where g is the metric induced by g^{S}.

Problem \#3. Let $M=\mathbb{R}^{2} \backslash \bar{B}_{1}$ where here $\bar{B}_{1}=\left\{\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2} \leq 1\right\}$ and so M is an open subset of \mathbb{R}^{2}. Consider the Riemannian manifold (M, g), where g is the metric inherited from g^{E}.
a) Describe the exponential map at $(2,0)$.
b) Determine the distance, in (M, g), between $(2,0)$ and $(-2,0)$.

Problem \#4. Let $M \subset \mathbb{R}^{n}$ be a submanifold and let g be the Riemannian metric on M induced by g^{E}. Show that for any points $p, q \in M$ that $d_{g^{E}}(p, q) \leq d_{g}(p, g)$. Suppose $p, q \in M$ are connected, in M, by a length minimizing geodesic, γ (i.e., γ a geodesic of g), what must be true of γ if $d_{g}(p)=,L_{g}(\gamma)=d_{g^{E}}(p, q)$.

Problem \#5. Given an n-dimensional Riemannian manifold (M, g). Show that at any point $p \in M$, there is a neighborhood U of p and vector fields $E_{1}, \ldots, E_{n} \in \mathcal{X}(U)$ so that

- $g\left(E_{i}, E_{j}\right)=\delta_{i j}$ - i.e., at each point of U, E_{1}, \ldots, E_{n} form an orthonormal basis
- For $i, j=1, \ldots, n,\left(D_{E_{i}} E_{j}\right)_{p}=0$ - i.e, at p the covariant derivative of each E_{j} is zero.

