Math 645, Fall 2017: Assignment #4

Due: Thursday, October 12th

Problem #1. Fix a Riemannian manifold and a piece-wise C^1 curve $c : [a, b] \to M$. Let $P_t^c(v) \in T_{c(t)}M$ be the parallel transport of $v \in T_{c(a)}M$ to $T_{c(t)}M$ along c.

- a) Show that the map $P_t^c: T_{c(a)}M \to T_{c(t)}M$ is a linear isometry between the inner product spaces $(T_{c(a)}M, g_{c(a)})$ and $(T_{c(t)}M, g_{c(t)})$.
- b) For a fixed $p \in M$, let

$$Hol_p = \{L : T_pM \to T_pM : L = P_{c(b)}^c, c : [a, b] \to M, c(a) = c(b) = p\}.$$

Show that Hol_p is a subgroup of $O(T_pM, g_p)$, the set of linear isometries of (T_pM, g_p) . For this reason it is called the holonomy group. (Hint: consider the natural group structure on the space of curves starting and ending at p).

c) What are the holonomy groups at each point of (\mathbb{R}^n, g^E) ?

Problem #2.

- a) Determine the holonomy group at each point of (\mathbb{S}^2, g^S) .
- b) Determine the holonomy group at each point of (\mathbb{RP}^2, g) where g is the metric induced by g^S .

Problem #3. Let $M = \mathbb{R}^2 \setminus \overline{B}_1$ where here $\overline{B}_1 = \{(x^1)^2 + (x^2)^2 \leq 1\}$ and so M is an open subset of \mathbb{R}^2 . Consider the Riemannian manifold (M, g), where g is the metric inherited from g^E .

- a) Describe the exponential map at (2,0).
- b) Determine the distance, in (M, g), between (2, 0) and (-2, 0).

Problem #4. Let $M \subset \mathbb{R}^n$ be a submanifold and let g be the Riemannian metric on M induced by g^E . Show that for any points $p, q \in M$ that $d_{g^E}(p,q) \leq d_g(p,g)$. Suppose $p,q \in M$ are connected, in M, by a length minimizing geodesic, γ (i.e., γ a geodesic of g), what must be true of γ if $d_q(p,) = L_q(\gamma) = d_{q^E}(p,q)$.

Problem #5. Given an *n*-dimensional Riemannian manifold (M, g). Show that at any point $p \in M$, there is a neighborhood U of p and vector fields $E_1, \ldots, E_n \in \mathcal{X}(U)$ so that

- $g(E_i, E_j) = \delta_{ij}$ i.e., at each point of U, E_1, \ldots, E_n form an orthonormal basis
- For i, j = 1, ..., n, $(D_{E_i}E_j)_p = 0$ i.e, at p the covariant derivative of each E_j is zero.