Math 645, Fall 2017: Assignment \#2

Due: Thursday, September 28th

Problem \#1. Let M be an n-dimensional differentiable manifold. Define the space of frames of M at p, $F_{p} M$, to be the set of ordered bases of $T_{p} M$ - i.e.,

$$
F_{p} M=\left\{\left(v_{1}, \ldots, v_{n}\right): v_{i} \in T_{p} M \text { and }\left\{v_{1}, \ldots, v_{n}\right\} \text { is a basis of } T_{p} M\right\} .
$$

Let $F M=\bigcup_{p \in M} F_{p} M$ be the frame bundle of M. Define the following equivalence relation on $F M$, $\left(p,\left(v_{1}, \ldots, v_{n}\right)\right) \sim\left(q,\left(w_{1}, \ldots, w_{n}\right)\right) \Longleftrightarrow p=q$ and $v_{i}=\sum_{j=1}^{n} A_{i j} w_{j}$ where $A_{i j} \in G L(n, \mathbb{R})$ has positive determinant. Let $\bar{M}=F M / \sim$ be the set of equivalence classes.
a) Prove that $F M$ has a natural differentiable manifold structure and that the map $\Pi: F M \rightarrow M$ given by $\left(p,\left(v_{1}, \ldots, v_{n}\right)\right) \mapsto p$ is smooth.
b) Show that \bar{M} has a natural differentiable manifold structure and that the map $\pi: \bar{M} \rightarrow M$ defined by $\left[p,\left(v_{1}, \ldots, v_{n}\right)\right] \mapsto p$ is a local diffeomorphism.
c) Show that \bar{M} is an orientable n-dimensional manifold.
d) Show that \bar{M} is connected if and only if M is connected and non-orientable. In this case, \bar{M} is called the oriented double cover of M.

Problem \#2. For $X \in \mathcal{X}(M)$, show that if $X_{p} \neq 0$, then there is a chart (U, V, ϕ) around p so that on U, $X=\frac{\partial}{\partial x^{1}}$. Show by example that if $Y \in \mathcal{X}(M)$ is another vector field with Y_{p} linearly independent from X_{p}, then it may not be possible to find a chart (U, V, ϕ) so that on U,

$$
X=\frac{\partial}{\partial x^{1}} \text { and } Y=\frac{\partial}{\partial x^{2}}
$$

Can you give a necessary condition on X and Y for the existence of such a chart?
Problem \#3. Let M be differentiable manifold and $X, Y \in \mathcal{X}_{0}(M)$ be two vector fields with compact support. If $\phi_{t}: M \rightarrow M$ is the time t flow of X and ψ_{t} is the time t flow of Y show that

$$
\left.\frac{d}{d t}\right|_{t=0} \gamma_{t}(p)=[X, Y](p)
$$

where

$$
\gamma_{t}=\psi_{-\sqrt{t}} \circ \phi_{-\sqrt{t}} \circ \psi_{\sqrt{t}} \circ \phi_{\sqrt{t}}
$$

Problem \#4. Show that for vector fields $X, Y_{1}, \ldots, Y_{k} \in \mathcal{X}(M)$ and a $A \in \Gamma\left(M, T^{(0, k)} M\right)$,

$$
\left(L_{X} A\right)\left(Y_{1}, \ldots, Y_{k}\right)=X \cdot\left(A\left(Y_{1}, \ldots, Y_{n}\right)\right)-\sum_{i=1}^{k} A\left(Y_{1}, \ldots, Y_{i-1},\left[X, Y_{i}\right], Y_{i+1}, \ldots, Y_{k}\right)
$$

Problem \#5. Show the following:
a) If U and V are open subsets of \mathbb{R}^{n} and $\phi: U \rightarrow V$ a diffeomorphism, then when $q=\phi(p)$,

$$
\left(\phi^{*} d x^{1} \wedge \ldots \wedge d x^{n}\right)_{p}=\left(\operatorname{det} J_{p}(\phi)\right) d x_{p}^{1} \wedge \ldots \wedge d x_{p}^{n} .
$$

b) If $U \subset \mathbb{R}^{n}$ is an open set, then

$$
\Lambda^{n} U=\left\{f d x^{1} \wedge \ldots \wedge d x^{n}: f \in C^{\infty}(U)\right\}
$$

That is, $\Lambda^{n} U$ is a the trivial rank one vector bundle.
c) For connected $M, \Lambda^{n} M$ is a rank one vector bundle that is trivial if and only if M is orientable.

