Math 645, Fall 2020: Assignment \#6

Due: Tuesday, October 27th

Problem \#1. Fix a manifold M. Two metrics g and h on M are conformal provided there is a function $u \in C^{\infty}(M)$ so that $h=e^{2 u} g$.
a) If ∇^{h} is the Levi-Civita connection of h and ∇^{g} is the Levi-Civita connection of g show that for any $X, Y \in \mathcal{X}(M)$

$$
\nabla_{X}^{h} Y=\nabla_{X}^{g} Y+(X \cdot u) Y+(Y \cdot u) X-g(X, Y) \operatorname{grad}^{g} u
$$

Here $\operatorname{grad}^{g} u$ is the g-gradient of u. (Hint: use compatibility with the metric).
b) Use this formula to determine the geodesics of the upper half-plane model of hyperbolic space. Recall, this is the Riemannian manifold $\left(\mathbb{U}^{n}, \breve{g}\right)$ where $\mathbb{U}^{n}=\left\{x^{n}>0\right\} \subset \mathbb{R}^{n}$ and with metric $\breve{g}=\left(x^{n}\right)^{-2} \bar{g}$.

Problem \#2. Let (M, g) be a Riemannian manifold and $p \in M$. Suppose that $\left(x^{1}, \ldots, x^{n}\right)$ are geodesic normal coordinates at p (so $\left.x^{i}(p)=0\right)$. Show that in these coordinates metric g satisfies the estimate

$$
\left|g_{i j}(q)-\delta_{i j}\right| \leq C_{1} r^{2}(q)
$$

where q is near p and $C_{1}>0$ depends on g. Here

$$
r(p)=\sqrt{\left(x^{1}(p)\right)^{2}+\ldots+\left(x^{n}(p)\right)^{2}}
$$

is the euclidean distance to the origin in the coordinate chart. That is, in geodesic normal coordinates the euclidean metric approximates the metric g to first order.

Problem \#3. Let (M, g) be a Riemannian manifold and $p \in M$. Use the preceding result to show that for $r>0$ sufficiently small

$$
\left|\operatorname{Vol}_{g}\left(\mathcal{B}_{r}(p)\right)-\omega_{n} r^{n}\right| \leq C_{2} r^{n+2}
$$

Here $\mathcal{B}_{r}(p)$ is the geodesic ball of radius r, ω_{n} is the volume of the unit ball in \mathbb{R}^{n} and $C_{2}>0$ depends on g. You should use the fact that $\operatorname{det}\left(I_{n}+s A\right)=1+s \operatorname{tr} A+O\left(s^{2}\right)$.

Problem \#4. Let (M, g) be a Riemannian manifold with Riemannian distance d_{g}.
a) Show that if $\gamma:(-\epsilon, \epsilon) \rightarrow M$ is a smooth curve, then

$$
\left|\gamma^{\prime}(0)\right|_{g}=\lim _{t \rightarrow 0} \frac{d_{g}(\gamma(t), 0)}{t}
$$

b) Show that if h is another Riemannian metric on M with Riemannian distance d_{h} and $d_{g}(p, q)=d_{h}(p, q)$ for all $p, q \in M$, then $g=h$. That is the Riemannian distance function uniquely determines the Riemannian metric.

Problem \#5. Let (M, g) be a complete non-compact Riemannian manifold. Prove that for each $p \in M$, there is a ray $\gamma:[0, \infty) \rightarrow M$ starting from p. That is, $\gamma(0)=p$ and γ is a minimizing geodesic.

