Math 645, Fall 2020: Assignment #3

Due: Tuesday, October 6th

Problem #1. Let (M, g) be a Riemannian manifold with Riemannian distance d_g . Show that the manifold topology and the topology of the metric space (M, d_g) coincide.

Problem #2. Let (M, g) and (N, h) be Riemannian manifolds. Show that if $\phi : M \to N$ is a Riemannian isometry (i.e., it is a diffeomorphism and $\phi^*h = g$), then it is a metric isometry (i.e., $d_h(\phi(p), \phi(q)) = d_q(p, q)$.

Problem #3. Let $i: M \to \mathbb{R}^n$ be an immersion and suppose $g = i^* \overline{g}$ (so (M, g) is isometrically immersed in Euclidean space).

- a) Show that $d_{\bar{g}}(i(p), i(q)) \leq d_g(p, q)$.
- b) Show that if one has $d_g(p,q) = d_{\bar{g}}(i(p),i(q))$ for all pairs of $p,q \in M$, then (M,g) is flat. You may use without proof the fact that the shortest curve connecting two points in Euclidean space must be a (reparamterization) of a line segment.

Problem #4. Let $SL(2,\mathbb{R})$ denote the set of 2×2 matrices with determinant 1. Let $SL(2,\mathbb{R})$ act on $\mathbb{U}^2 = \{x + iy : y > 0\} \subset \mathbb{C}$, the upper half plane thought of as a subset of \mathbb{C} , by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$$

Show that this gives an isometry on $(\mathbb{U}^2, \check{g}_1)$, the upper half-plane model of hyperbolic space of radius 1. Show this action is transitive. Recall,

$$\breve{g}_1 = \frac{dx^2 + dy^2}{y^2}.$$

Problem #5. Define a connection ∇ on \mathbb{R}^3 by

$$\begin{split} \nabla_{\partial_{x_1}}\partial_{x_1} &= \nabla_{\partial_{x_2}}\partial_{x_2} = \nabla_{\partial_{x_3}}\partial_{x_3} = 0, \\ \nabla_{\partial_{x_1}}\partial_{x_2} &= \partial_{x_3}, & \nabla_{\partial_{x_2}}\partial_{x_1} = -\partial_{x_3}, \\ \nabla_{\partial_{x_1}}\partial_{x_3} &= -\partial_{x_2}, & \nabla_{\partial_{x_3}}\partial_{x_1} = \partial_{x_2}, \\ \nabla_{\partial_{x_2}}\partial_{x_3} &= \partial_{x_1}, & \nabla_{\partial_{x_3}}\partial_{x_2} = -\partial_{x_1}, \end{split}$$

where here $\partial_{x_i} = \frac{\partial}{\partial x^i}$ are the coordinate vector fields of the standard coordinates.

a) Verify that this connection is compatible with \bar{g} the Euclidean metric but is not torsion-free.

- b) Determine the zero-acceleration curves of ∇ .
- c) Determine the parallel transport of ∇ along zero-acceleration curves.