Math 645, Fall 2020: Assignment \#3

Due: Tuesday, October 6th

Problem \#1. Let (M, g) be a Riemannian manifold with Riemannian distance d_{g}. Show that the manifold topology and the topology of the metric space $\left(M, d_{g}\right)$ coincide.

Problem \#2. Let (M, g) and (N, h) be Riemannian manifolds. Show that if $\phi: M \rightarrow N$ is a Riemannian isometry (i.e., it is a diffeomorphism and $\phi^{*} h=g$), then it is a metric isometry (i.e., $d_{h}(\phi(p), \phi(q))=d_{g}(p, q)$.

Problem \#3. Let $i: M \rightarrow \mathbb{R}^{n}$ be an immersion and suppose $g=i^{*} \bar{g}$ (so (M, g) is isometrically immersed in Euclidean space).
a) Show that $d_{\bar{g}}(i(p), i(q)) \leq d_{g}(p, q)$.
b) Show that if one has $d_{g}(p, q)=d_{\bar{g}}(i(p), i(q))$ for all pairs of $p, q \in M$, then (M, g) is flat. You may use without proof the fact that the shortest curve connecting two points in Euclidean space must be a (reparamterization) of a line segment.

Problem \#4. Let $S L(2, \mathbb{R})$ denote the set of 2×2 matrices with determinant 1 . Let $S L(2, \mathbb{R})$ act on $\mathbb{U}^{2}=\{x+i y: y>0\} \subset \mathbb{C}$, the upper half plane thought of as a subset of \mathbb{C}, by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z=\frac{a z+b}{c z+d}
$$

Show that this gives an isometry on $\left(\mathbb{U}^{2}, \breve{g}_{1}\right)$, the upper half-plane model of hyperbolic space of radius 1 . Show this action is transitive. Recall,

$$
\breve{g}_{1}=\frac{d x^{2}+d y^{2}}{y^{2}}
$$

Problem \#5. Define a connection ∇ on \mathbb{R}^{3} by

$$
\begin{array}{lr}
\nabla_{\partial_{x_{1}}} \partial_{x_{1}}=\nabla_{\partial_{x_{2}}} \partial_{x_{2}}=\nabla_{\partial_{x_{3}}} \partial_{x_{3}}=0, \\
\nabla_{\partial_{x_{1}}} \partial_{x_{2}}=\partial_{x_{3}}, & \nabla_{\partial_{x_{2}}} \partial_{x_{1}}=-\partial_{x_{3}}, \\
\nabla_{\partial_{x_{1}}} \partial_{x_{3}}=-\partial_{x_{2}}, & \nabla_{\partial_{x_{3}}} \partial_{x_{1}}=\partial_{x_{2}}, \\
\nabla_{\partial_{x_{2}}} \partial_{x_{3}}=\partial_{x_{1}}, & \nabla_{\partial_{x_{3}}} \partial_{x_{2}}=-\partial_{x_{1}},
\end{array}
$$

where here $\partial_{x_{i}}=\frac{\partial}{\partial x^{i}}$ are the coordinate vector fields of the standard coordinates.
a) Verify that this connection is compatible with \bar{g} the Euclidean metric but is not torsion-free.
b) Determine the zero-acceleration curves of ∇.
c) Determine the parallel transport of ∇ along zero-acceleration curves.

