Math 645, Fall 2020: Assignment #3

Due: Tuesday, September 29th

Problem #1. Verify that a $\phi \in C^{\infty}(\mathbb{R}^n; \mathbb{R}^n)$ that satisfies $\phi(0) = 0$, is an isometry of (\mathbb{R}^n, \bar{g}) if and only if ϕ can be identified with an element of $O(n) = \{A \in \mathbb{R}^{n \times n} : A^{\top}A = I_n\}$.

Problem #2. Show that if a smooth manifold M admits an atlas $\{(U_{\alpha}, \phi_{\alpha})\}$ so that all transition functions $\phi_{\alpha} \circ \phi_{\beta}^{-1} : \phi_{\beta}(U_{\alpha} \cap U_{\beta}) \to \phi_{\alpha}(U_{\alpha} \cap U_{\beta})$ are Euclidean isometries, then M admits a flat Riemannian metric g.

Problem #3. Let (M, g) and (N, h) be Riemannian manifolds and f a smooth positive function on M. Define a (0, 2)-tensor on $M \times N$ by

$$(g \times_f h)_p(X_p, Y_p) = g_{\pi_M(p)}(T_p \pi_M(X_p), T_p \pi_M(Y_p)) + f^2(\pi_M(p))h_{\pi_N(p)}(T_p \pi_N(X_p), T_p \pi_N(Y_p))$$

where here π_N, π_M are the natural projections.

- a) Show that $g \times_f h$ is a Riemannian metric on $M \times N$. it is the *warped product metric* introduced in class.
- b) Let $(M, g) = (\mathbb{R}^+, \overline{g})$ and $(N, h) = (\mathbb{S}^n, \mathring{g})$ and denote by $r \in C^{\infty}(M)$ the standard coordinate on \mathbb{R}^+ . Consider the following family of warped product metrics

$$c_{\lambda} = g \times_{\lambda r} h.$$

Show that $(\mathbb{R}^+ \times \mathbb{S}^1, c_\lambda)$ is locally isometric to $(\mathbb{R}^2 \setminus \{0\}, \overline{g})$ for all $\lambda > 0$.

Problem #4. Let $(M,g) = ((0,2\pi), \overline{g})$ and $(N,h) = (\mathbb{S}^n, \mathring{g})$ show that

$$\bar{g} \times_{\sin(r)} \check{g}$$

is isometric to $(\mathbb{S}^{n+1} \setminus \{S, N\}, \mathring{g})$. Here $S, N \in \mathbb{S}^{n+1}$ are antipodal points.

Problem #5. Show that every one dimensional Riemannian manifold (M, g) is flat.