Mathematic 405, Fall 2015: Assignment \#6

Due: Wednesday, April 1st

Instructions: Please ensure that your answers are legible. Also make sure that sufficient steps are shown. Page numbers refer to the course text.

Problem \#1. Let $I=(a, b)$ be an interval. Suppose that $f: I \rightarrow R$ is differentable. Show that for any compact interval $I_{\delta} \subset I$ with $I_{\delta}=\left[x_{0}-\delta, x_{0}+\delta\right]$, one has
a) $f\left(I_{\delta}\right)$ is a compact interval.
b) $\left|f\left(I_{\delta}\right)\right|-\left|f^{\prime}\left(x_{0}\right)\right|\left|I_{\delta}\right|=\left|f\left(I_{\delta}\right)\right|-2\left|f^{\prime}\left(x_{0}\right)\right| \delta=o(\delta), \delta \rightarrow 0$. Here $|I|$ means the length of a compact interval I, so $\left|I_{\delta}\right|=2 \delta$. That is, $\left|f^{\prime}\left(x_{0}\right)\right|$ measures the extent to which f distorts length near x_{0}.
c) (Optional) Give a "geometric" interpretation of the chain rule using the above observation.

Problem \#2. p. 163 \# 6
Problem \#3. p. 163 \# 8
Problem \#4. p. $163 \# 13$
Problem \#5. p. 176 \# 1

Problem \#6. p. 176 \# 4
Problem \#7. p. 176 \# 10
Problem \#8. p. 192 \# 1

