Mathematic 405, Fall 2015: Assignment \#6

Due: Wednesday, March 25th

Instructions: Please ensure that your answers are legible. Also make sure that sufficient steps are shown. Page numbers refer to the course text.

Problem \#1. Let $f: D \rightarrow \mathbb{R}$ be differentiable at $x_{0} \in D$ and $g(x)=f\left(x_{0}\right)+m\left(x-x_{0}\right)$ be an affine function.
a) Show that $f-g=O\left(\left|x-x_{0}\right|\right), x \rightarrow x_{0}$.
b) Show $f-g=o\left(\left|x-x_{0}\right|\right), x \rightarrow x_{0}$ if and only if $m=f^{\prime}\left(x_{0}\right)$.
c) If f is not differentiable at x_{0}, is it true that $f-g \neq O\left(\left|x-x_{0}\right|\right), x \rightarrow x_{0}$.

Problem \#2. pg. $152 \# 2$.
Problem \#3. pg. $152 \# 3$.
Problem \#4. pg. $152 \# 6$.
Problem \#5. pg. $152 \#$ 9. Here we say $f_{M} \rightarrow h$ as $M \rightarrow \infty$ if, for each x for which this makes sense, $\lim _{M \rightarrow \infty} f_{M}(x)=h(x)$.

Problem \#6. pg. 163 \# 2.
Problem \#7. pg. 163 \# 10.
Problem \#8. Let $I=(a, b)$ be an interval. Show that if $f: I \rightarrow \mathbb{R}$ is differentiable and $\left|f^{\prime}\right|<M<\infty$, then f is Lipschitz with Lipschitz constant M. Give an example to show that this is not possible without the uniform bound (i.e. give a differentiable function which is not Lipschitz.) Hint: use the Mean Value Theorem.

