Mathematic 405, Fall 2015: Assignment \#5

Due: Wednesday, March 11th

Instructions: Please ensure that your answers are legible. Also make sure that sufficient steps are shown. Page numbers refer to the course text.

Problem \#1. Use the intermediate value theorem to show that if $p(x)=\sum_{i=1}^{n} a_{i} x^{i}$ is a degree n polynomial (so $a_{n} \neq 0$) and n is odd, then p must have a real zero.

Problem \#2. Let $f:[0,1] \rightarrow[0,1]$ be continuous. Use the intermediate value theorem to show that f has at least one fixed point - i.e., a point satisfying $f(x)=x$.

Problem \#3. Show that if $f:(0,1) \rightarrow \mathbb{R}$ is uniformly continuous, then $\lim _{x \rightarrow 0^{+}} f(x)$ and $\lim _{x \rightarrow 1^{-}} f(x)$ both exist. Use this to show that there is a uniformly continuous function $\hat{f}:[0,1] \rightarrow \mathbb{R}$ with $\hat{f}(x)=f(x)$ for all $x \in(0,1)$. Give an example to show this is not possible if f is only continuous.

Problem \#4. p. $125 \# 6$
Problem \#5. p. 125 \# 7
Problem \#6. p. 138 \# 10
Problem \#7. p. 138 \# 11
Problem \#8. p. $138 \# 12$
Bonus Problem. (Will not be graded)
Let $C \subset \mathbb{R}$ be an arbitrary non-empty compact set and suppose $f: C \rightarrow C$ satisfies $|f(x)-f(y)| \leq \alpha|x-y|$ for all $x, y \in C$ and some $\alpha \in(0,1)$ (in particular f is Lipschitz). Such a map is an example of a contraction.
a) Show that f has a fixed point. (Hint: Show that the inductively defined sequence $a_{1}=x_{1}, a_{n+1}=f\left(a_{n}\right)$ is Cauchy where here x_{0} an arbitrary point of C).
b) Show that this fixed point is the only fixed point of f.
c) What happens if C is not compact or f is merely continuous.

