Mathematic 405, Spring 2015: Assignment #2

Due: Wednesday, February 11th

Instructions: Please ensure that your answers are legible. Also make sure that sufficient steps are shown. Page numbers refer to the course text.

Problem #1. Consider the following relation on $X = \mathbb{Z} \times \mathbb{N}$

$$(x,y) \sim (x',y') \iff xy' = x'y.$$

- a) Verify that \sim is an equivalence relation on X. Let $Q = X / \sim$ be the quotient set.
- b) Show that the map $\phi: X \to \mathbb{Q}$ given by $(x, y) \mapsto x/y$ is constant on each ~-equivalence class [(x, y)]. Conclude that there is a well-defined map $\Phi: Q \to \mathbb{Q}$ and show that Φ is a bijection.
- c) Define operations \oplus and \otimes on X by

$$(x,y) \oplus (x',y') = (xy' + yx', yy')$$
 and $(x,y) \otimes (x',y') = (xx', yy')$.

Verify that if $(x_1, y_1) \sim (x_2, y_2)$ and $(x'_1, y'_1) \sim (x'_2, y'_2)$, then $(x_1, y_1) \oplus (x'_1, y'_1) \sim (x_2, y_2) \oplus (x'_2, y'_2)$ and $(x_1, y_1) \otimes (x'_1, y'_1) \sim (x_2, y_2) \otimes (x'_2, y'_2)$. Conclude that there are well defined operations \oplus and \otimes on Q given by

 $[(x,y)] \oplus [(x',y')] = [(x,y) \oplus (x',y')] \text{ and } [(x,y)] \otimes [(x',y')] = [(x,y) \otimes (x',y')].$

- d) Show that $\Phi(z \oplus z') = \Phi(z) + \Phi(z')$ and $\Phi(z \otimes z') = \Phi(z)\Phi(z')$. That is, we have constructed a model of the rationals out of the integers.
- Problem #2. p. 37 # 4
 Problem #3. p. 37 # 5
 Problem #4. p. 37 # 7
- **Problem #5.** p. 48 # 2
- **Problem #6.** p. 48 # 3
- **Problem #7.** p. 48 # 10

Problem #8. The so-called Babylonian method for finding the square root of $S \in \mathbb{Q}^+$ is a recursive algorithm defined as follows: Start with any $x_1 \in \mathbb{Q}^+$ and define (for $n \ge 1$)

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{S}{x_n} \right).$$

- a) Show $S \leq x_{n+1}^2$ and hence $x_{n+1} \leq x_n$ for $n \geq 1$. Conclude that the closed intervals $I_n = \left\lfloor \frac{S}{x_n}, x_n \right\rfloor$ contain \sqrt{S} in the sense that $\left(\frac{S}{x_n} \right)^2 \leq S$ and $S \leq x_n^2$ and that $I_{n+1} \subset I_n$.
- b) Show that the lengths of I_n satisfy $|I_{n+1}| \leq \frac{1}{2}|I_n|$.
- c) Show that $\{x_n\}$ is a Cauchy sequence over the rationals.