Mathematic 405, Spring 2015: Assignment \#2

Due: Wednesday, February 11th

Instructions: Please ensure that your answers are legible. Also make sure that sufficient steps are shown. Page numbers refer to the course text.

Problem \#1. Consider the following relation on $X=\mathbb{Z} \times \mathbb{N}$

$$
(x, y) \sim\left(x^{\prime}, y^{\prime}\right) \Longleftrightarrow x y^{\prime}=x^{\prime} y
$$

a) Verify that \sim is an equivalence relation on X. Let $Q=X / \sim$ be the quotient set.
b) Show that the map $\phi: X \rightarrow \mathbb{Q}$ given by $(x, y) \mapsto x / y$ is constant on each \sim-equivalence class $[(x, y)]$. Conclude that there is a well-defined map $\Phi: Q \rightarrow \mathbb{Q}$ and show that Φ is a bijection.
c) Define operations \oplus and \otimes on X by

$$
(x, y) \oplus\left(x^{\prime}, y^{\prime}\right)=\left(x y^{\prime}+y x^{\prime}, y y^{\prime}\right) \text { and }(x, y) \otimes\left(x^{\prime}, y^{\prime}\right)=\left(x x^{\prime}, y y^{\prime}\right)
$$

Verify that if $\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)$ and $\left(x_{1}^{\prime}, y_{1}^{\prime}\right) \sim\left(x_{2}^{\prime}, y_{2}^{\prime}\right)$, then $\left(x_{1}, y_{1}\right) \oplus\left(x_{1}^{\prime}, y_{1}^{\prime}\right) \sim\left(x_{2}, y_{2}\right) \oplus\left(x_{2}^{\prime}, y_{2}^{\prime}\right)$ and $\left(x_{1}, y_{1}\right) \otimes\left(x_{1}^{\prime}, y_{1}^{\prime}\right) \sim\left(x_{2}, y_{2}\right) \otimes\left(x_{2}^{\prime}, y_{2}^{\prime}\right)$. Conclude that there are well defined operations \oplus and \otimes on Q given by

$$
[(x, y)] \oplus\left[\left(x^{\prime}, y^{\prime}\right)\right]=\left[(x, y) \oplus\left(x^{\prime}, y^{\prime}\right)\right] \text { and }[(x, y)] \otimes\left[\left(x^{\prime}, y^{\prime}\right)\right]=\left[(x, y) \otimes\left(x^{\prime}, y^{\prime}\right)\right]
$$

d) Show that $\Phi\left(z \oplus z^{\prime}\right)=\Phi(z)+\Phi\left(z^{\prime}\right)$ and $\Phi\left(z \otimes z^{\prime}\right)=\Phi(z) \Phi\left(z^{\prime}\right)$. That is, we have constructed a model of the rationals out of the integers.

Problem \#2. p. $37 \# 4$
Problem \#3. p. $37 \# 5$
Problem \#4. p. 37 \# 7
Problem \#5. p. $48 \# 2$
Problem \#6. p. $48 \# 3$
Problem \#7. p. $48 \# 10$
Problem \#8. The so-called Babylonian method for finding the square root of $S \in \mathbb{Q}^{+}$is a recursive algorithm defined as follows: Start with any $x_{1} \in \mathbb{Q}^{+}$and define (for $n \geq 1$)

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{S}{x_{n}}\right)
$$

a) Show $S \leq x_{n+1}^{2}$ and hence $x_{n+1} \leq x_{n}$ for $n \geq 1$. Conclude that the closed intervals $I_{n}=\left[\frac{S}{x_{n}}, x_{n}\right]$ contain \sqrt{S} in the sense that $\left(\frac{S}{x_{n}}\right)^{2} \leq S$ and $S \leq x_{n}^{2}$ and that $I_{n+1} \subset I_{n}$.
b) Show that the lengths of I_{n} satisfy $\left|I_{n+1}\right| \leq \frac{1}{2}\left|I_{n}\right|$.
c) Show that $\left\{x_{n}\right\}$ is a Cauchy sequence over the rationals.

