Mathematic 405, Fall 2014: Assignment \#1

Due: Wednesday, February 4th

Instructions: Please ensure that your answers are legible. Also make sure that sufficient steps are shown. Page numbers refer to the course text.

Problem \#1. For any set A, let $2^{A}=\left\{f: f: A \rightarrow \mathbb{N}_{2}\right\}$. Show that 2^{A} is in bijection with $P(A)$, the power set of A. Recall, $\mathbb{N}_{N}=\{1,2, \ldots, N\} \subset \mathbb{N}$. (Hint: Construct natural maps between the two sets).

Problem \#2. Show that every subset of \mathbb{N} is either finite or countable (Hint: Use the well ordering property of \mathbb{N}). Conclude that every subset of a countable set is finite or countable.

Problem $\# \mathbf{3}$. Let A_{n} be collection of countable sets, where $n \in \mathbb{N}$. Show that

$$
A=\bigcup_{n \in \mathbb{N}} A_{n}=\left\{x: \exists n \in \mathbb{N} \text { so that } x \in A_{n}\right\}
$$

is countable.

Problem \#4.

a) Show that if both A and B are countable, then so is $A \times B$.
b) Show that \mathbb{Q}, the set of rational numbers, is countable.

Problem \#5. Determine whether, $P_{\text {finite }}(\mathbb{N})$ the set of all finite subsets of \mathbb{N}, is countable.
Problem \#6. Let A be uncountable and $B \subset A$ be countable. Show that $A \backslash B$ is uncountable.
Problem \#7. Show that there is no $x \in \mathbb{Q}$ so that $x^{2}=6$.
Problem \#8. For a given number $n \in \mathbb{N}$ with $n>1$, use the well ordering principle of \mathbb{N} to show that n has at least one prime factor. (Hint: consider F_{n} the set of factors of n which are greater than 1).

