Solutions Midterm Exam 2 - Apr. 9, 2014

1. Determine whether the following statements are true or false. Justify your answer (i.e., prove the claim, derive a contradiction or give a counter-example).
(a) (10 points) If $f: D \rightarrow \mathbb{R}$ is continuous and D is closed, then for all $C \subset \mathbb{R}$ closed, $f^{-1}(C)$ is closed.

True. Let $x_{n} \in f^{-1}(C)$ satisfy $x_{n} \rightarrow x \in \mathbb{R}$ as $n \rightarrow \infty$. As D is closed, $x \in D$. Hence, as f is continuous, $f\left(x_{n}\right) \rightarrow f(x)$ and since C is closed $f(x) \in C$. Hence, $x \in f^{-1}(C)$. As this is true of all convergent sequences, $f^{-1}(C)$ is closed.
(b) (10 points) If $f: D \rightarrow \mathbb{R}$ is continuous, and $D \subset \mathbb{R}$ is closed, then $f(D)$ is closed.

False. Let $D=\mathbb{R}$, which is closed and $f(x)=\frac{1}{1+x^{2}}$, which is continuous. Then $f(\mathbb{R})=(0,1]$ which is not closed.
(c) (10 points) If $f:(a, b) \rightarrow \mathbb{R}$ is C^{1} and injective, then $f^{\prime} \neq 0$.

False. Consider $f(x)=x^{3}$ on $(-1,1)$.
(d) (10 points) There is no differentiable function $f:(-1,1) \rightarrow \mathbb{R}$ with $f^{\prime}(x)=\left\{\begin{array}{cl}-1 & x \leq 0 \\ 1 & x>0\end{array}\right.$.

True. If there was such a differentiable f, then the fact that $f^{\prime}(-1 / 2)=-1$ and $f^{\prime}(1 / 2)=1$ together imply the existence of a $z \in(-1 / 2,1 / 2)$ so that $f^{\prime}(z)=0$.
(e) (10 points) Suppose $f:(-1,1) \rightarrow \mathbb{R}$ is C^{1} and $f(0)=0$. If $f^{\prime}=O(|x|), x \rightarrow 0$, then $f=$ $O\left(|x|^{2}\right), x \rightarrow 0$.

True. For $x \neq 0$, the mean value theorem implies that $\frac{f(x)}{x}=\frac{f(x)-f(0)}{x-0}=f^{\prime}\left(x_{1}\right)$ for some x_{1} between 0 and x. That is, $|f(x)|=\left|f^{\prime}\left(x_{1}\right)\right||x|$ for some x_{1} with $0<\left|x_{1}\right|<|x|$. As $f^{\prime}=O(|x|), x \rightarrow 0$, there is a $\delta>0$ and a $C>0$ so if $|x|<\delta$, then $\left|f^{\prime}(x)\right| \leq C|x|$. Hence, for $|x|<\delta,|f(x)| \leq C\left|x_{1}\right||x| \leq C|x|^{2}$. That is, $f=O\left(|x|^{2}\right), x \rightarrow 0$.
(f) (10 points) If $f:(-1,1) \rightarrow \mathbb{R}$ is C^{3} and has Taylor polynomial at $x_{0}=0$ given by $T_{3}(f, 0 ; x)=$ $3+x^{2}-100 x^{3}$, then f has a strict local minimum at $x_{0}=0$.

True. $f^{\prime}(0)=0$ and $f^{\prime \prime}(0)=2>0$ and so $x_{0}=0$ is a strict local minimum.
2. (15 points) Let $f:(a, b) \rightarrow \mathbb{R}$ be uniformly continuous. Show that $\lim _{x \rightarrow b} f(x)$ exists.

Let $x_{k} \in(a, b)$ satisfy $x_{k} \rightarrow b$. By the uniform continuity, $y_{k}=f\left(x_{k}\right)$ is a Cauchy sequence. Indeed, for each $\epsilon>0$, there is a $\delta>0$ so that if $|x-y|<\delta$, then $|f(x)-f(y)|<\epsilon$. Hence, if m is choosen so that $m<n$ implies $\left|x_{n}-b\right|<\delta / 2$, then if $m<n, k$, then $\left|x_{n}-x_{k}\right|<\delta$ and hence $\left|y_{n}-y_{k}\right|<\epsilon$. Let $L=\lim _{k \rightarrow \infty} y_{k}$. We show that $\mid \lim _{x \rightarrow b} f(x)=L$. Indeed, for each $\epsilon>0$, choose $\delta>0$ as before. Pick some $x_{k} \in(b-\delta, b)$ so that $\left|f\left(x_{k}\right)-L\right|<\epsilon\left(\right.$ such x_{k} exists as $x_{k} \rightarrow b$ and $\left.f\left(x_{k}\right) \rightarrow L\right)$. For any $x \in(b-\delta, b),\left|x-x_{k}\right|<\delta$ and hence $|f(x)-L| \leq 2 \epsilon$ by the triangle inequality.
3. (a) (5 points) Show that for any pairs $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ with $x_{1} \neq x_{2}$, there is a unique affine function g with $g\left(x_{i}\right)=y_{i}, i=1,2$.

Set $g(x)=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)+y_{1}$. This is a well-defined affine function with the desired properties. On the other, hand if $g(x)=m x+b$ is affine, then one sees that $g\left(x_{i}\right)=y_{i}$ only if $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=m$ and $y_{1}=b$ which shows g is unique.
(b) (10 points) Let $f:(a, b) \rightarrow \mathbb{R}$ be C^{2} and suppose that $f^{\prime \prime}(x)<0$ for all $x \in(a, b)$. Show that if g is an affine function with $g\left(x_{1}\right)=f\left(x_{1}\right)$ and $g\left(x_{2}\right)=f\left(x_{2}\right)$, for $a<x_{1}<x_{2}<b$, then $g(x)<f(x)$ for all $x \in\left(x_{1}, x_{2}\right)$.

Set $h(x)=f(x)-g(x)$. So $h\left(x_{1}\right)=h\left(x_{2}\right)=0$. If there was any point $z \in\left(x_{1}, x_{2}\right)$ so that $h(z) \leq 0$, then h would have a local minimum at some point $z^{\prime} \in\left(x_{1}, x_{2}\right)$. At such a point $h^{\prime \prime}\left(z^{\prime}\right) \geq 0$. However, $h^{\prime \prime}\left(z^{\prime}\right)=f^{\prime \prime}\left(z^{\prime}\right)<0$, so this is not possible. Hence, $h(x)>0$ for all $x \in\left(x_{1}, x_{2}\right)$.
(c) (10 points) Let $f:(a, b) \rightarrow \mathbb{R}$ be C^{2}. Show that if, for all $a<y<z<b, f\left(\frac{y+z}{2}\right) \leq \frac{f(y)+f(z)}{2}$, then $f^{\prime \prime}(x) \geq 0$ for all $x \in(a, b)$. (Hint: If g is affine, then $g\left(\frac{y+z}{2}\right)=\frac{g(y)+g(z)}{2}$).

Suppose $f^{\prime \prime}(c)<0$ for some $c \in(a, b)$. By the continuity of $f^{\prime \prime}$, there is a neighborhood U of c so that $f^{\prime \prime}<0$. Pick $y, z \in U$ so $(y, z) \subset U$. If g is the affine function with $g(y)=f(y)$ and $g(z)=f(z)$, then part (b) implies that $f(x)>g(x)$ for all $x \in(y, z)$. Hence, $f\left(\frac{y+z}{2}\right)>$ $g\left(\frac{y+z}{2}\right)=\frac{g(y)+g(z)}{2}=\frac{f(y)+f(z)}{2}$. This contradicts our assumption and proves the result.

