
1. Recall that

‖f‖u = sup{|f(x)| | x ∈ S}

(a) By triangle inequality we have

|f(x) + g(x)| ≤ |f(x)|+ |g(x)|

Taking supremum both sides and using

sup
x∈S

(|f(x)|+ |g(x)|) ≤ sup
x∈S
|f(x)|+ sup

x∈S
|g(x)|

gives the inequality.

(b) Clearly

|f(x)g(x)| = |f(x)| |g(x)|

Taking supremum both sides and using

sup
x∈S
|f(x)| |g(x)| ≤

(
sup
x∈S
|f(x)|

)(
sup
x∈S
|g(x)|

)
(since |f | and |g| are nonnegative) gives the inequality.

2. (a) Let ε > 0 and x ∈ S. Since fn → f pointwise there is N1 ∈ N such that n > N1 implies
|fn(x)− f(x)| < ε/2. Similarly there is N2 ∈ N such that n > N2 implies |gn(x)− g(x)| < ε/2.
Let N = max{N1, N2} and n > N implies

|fn(x) + gn(x)− f(x)− g(x)| ≤ |fn(x)− f(x)|+ |gn(x)− g(x)| < ε

so fn + gn = hn → f + g pointwise.

(b) The exact same argument as above works. Instead one does not choose a specific x ∈ S at the
first place to account for uniform convergence.

3. Suppose for a contradiction that there is x, y ∈ (a, b) with x < y such that f(y) < f(x). Let ε =
f(x)− f(y) > 0. Since fn → f pointwise, there is N1 such that n > N1 implies

|fn(x)− f(x)| < ε/3 =⇒ fn(x) > f(x)− ε/3

Similarly there is N2 such that n > N2 implies

|fn(y)− f(y)| < ε/3 =⇒ fn(y) < f(y) + ε/3

Let N = max{N1, N2} and n > N implies that

fn(y)− fn(x) < f(y) + ε/3− f(x) + ε/3 = −ε+ 2ε/3 = −ε/3 < 0

a contradiction since fn is non-decreasing.

4. Let ε > 0. Since f is uniformly continuous, there is δ > 0 such that |x− y| < δ implies |f(x)− f(y)| < ε.
Choose N such that 1

N < δ, then n > N implies

|fn(x)− f(x)| = |f(x+ 1/n)− f(x)| < ε

so fn → f uniformly.

5. (a) Since h is continuous on [a, b], h is uniformly continuous on [a, b] (bounded interval implies uniform
continuity), therefore f is also uniformly continuous (since it is constant outside of [a, b]). f is
clearly bounded.
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(b) By the fundamental theorem of calculus we have

f ′n(x) =
n

2
(f(x+ 1/n)− f(x− 1/n))

which is uniformly continuous (since composition of uniformly continuous functions is still uni-
formly continuous). Moreover,

|fn(x)| ≤ n

2
(x+ 1/n− (x− 1/n)) sup

x∈(x−1/n,x+1/n)

|f(x)| ≤ ‖f‖u

So ‖fn‖u ≤ ‖f‖u.

(c) Let ε > 0. Since f is uniformly continuous, there is δ > 0 such that |x− y| < δ implies
|f(x)− f(y)| < ε. Choose N such that 1/N < δ. For n > N we have

|fn(x)− f(x)| = n

2

∣∣∣∣∣
∫ x+1/n

x−1/n
f(t)dt−

∫ x+1/n

x−1/n
f(x)dt

∣∣∣∣∣ ≤ n

2

∫ x+1/n

x−1/n
|f(x)− f(t)| dt

≤ n

2

∫ x+1/n

x−1/n
εdt =

n

2
· 2

n
ε = ε

(since |t− x| < 1/n < δ for t ∈ (x − 1/n, x + 1/n)) so fn → f uniformly on R. In particular,
fn → h uniformly on [a, b].

6. (a) The function clearly has no issues for x 6= 0. We need to check that limx→0 P (1/x)φ(x) = 0 for
any polynomial P . By linearity of the limit it suffices to show for P (x) = xn for n ∈ N ∪ {0}.
We use induction. This is clearly true for n = 0. Suppose the claim is true for all n = k, then for
n = k + 1 by L’Hopital’s rule we have

lim
x→0

x−(k+1)e−1/x = lim
x→0

x−(k+1)

e1/x
= lim

x→0

−(k + 1)x−(k+2)

−x−2e1/x
= lim

x→0

(k + 1)x−k

e1/x
= 0

Hence by induction we have limx→0 x
−ne−1/x = 0 for all n ∈ N. Thus f(x) is continuous.

(b) We use induction again. For k = 0 the statement is clearly true. Suppose φ(k)(x) = Pk(1/x)φ(x)
for some polynomial Pk. For x > 0 using the chain rule we have

φ(k+1)(x) = P ′k(1/x) · (− 1

x2
)φ(x) + (

1

x2
Pk(1/x))φ(x) = ((−x2P ′k)(1/x) + (x2Pk)(1/x))φ(x)

which is again of the form Pk+1(1/x)φ(x), where

Pk+1(x) = −x2P ′k + x2Pk

is again a polynomial. For x < 0 clearly φ(k+1)(x) = Pk+1(1/x)φ(x) still holds since φ(x) is
identically 0. Finally we have

lim
x→0

φ(k+1)(x) = 0

by part (a). So φ(k+1)(x) is a continuous function of the form φ(k+1)(x) = Pk+1(x)φ(x) for all
x ∈ R. Consequently it is a smooth function on R by part (a).

7. (a) Consider ψ(x) = φ((x− a)(b− x)) for x ∈ (a, b). Clearly when x ≤ a or x ≥ b we have ψ(x) = 0,
and when x ∈ (a, b) we have ψ(x) > 0 sicne (x− a)(b− x) > 0. Moreover ψ is smooth since φ is.

(b) Let

C =

∫ b

a

ψ(x)dx

(which can be computed explicitly). Now define

η(x) =
1

C

∫ x

−∞
ψ(t)dt
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Clearly η is again a smooth function. Moreover when x < a, η(x) = 0 since ψ(x) = 0, and when
x > b we have

η(x) =
1

C

∫ b

−∞
ψ(t)dt =

1

C

∫ b

a

ψ(t)dt = 1

Finally when x ∈ (a, b) we must have 0 ≤ η(x) ≤ 1 since η(x) is clearly increasing.

(c) Let ψ1(x) be the function as constructed in part (b) such that ψ1(x) = 0 for x ≤ a and x = 1 for
x ≥ c. Let ψ2(x) be the function as constructed in part (b) such that ψ2(x) = 0 for x ≤ d and
ψ2(x) = 1 for x ≥ b. Consider ζ(x) = ψ1(x)− ψ2(x) which is clearly smooth. For x ≤ a we have
ψ1(x) = ψ2(x) = 0. For a ≤ x ≤ c we have ζ(x) = ψ1(x) which is between 0 and 1. For c ≤ x ≤ d
we again have ζ(x) = ψ1(x) which is identically 1. For d ≤ x ≤ b we have ζ(x) = 1− ψ2(x) which
is again between 0 and 1. Finally for x ≥ b we have ζ(x) = 1 − 1 = 0 again. So this is precisely
what we want.
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