1. Recall that

$$
\|f\|_{u}=\sup \{|f(x)| \mid x \in S\}
$$

(a) By triangle inequality we have

$$
|f(x)+g(x)| \leq|f(x)|+|g(x)|
$$

Taking supremum both sides and using

$$
\sup _{x \in S}(|f(x)|+|g(x)|) \leq \sup _{x \in S}|f(x)|+\sup _{x \in S}|g(x)|
$$

gives the inequality.
(b) Clearly

$$
|f(x) g(x)|=|f(x)||g(x)|
$$

Taking supremum both sides and using

$$
\sup _{x \in S}|f(x)||g(x)| \leq\left(\sup _{x \in S}|f(x)|\right)\left(\sup _{x \in S}|g(x)|\right)
$$

(since $|f|$ and $|g|$ are nonnegative) gives the inequality.
2. (a) Let $\varepsilon>0$ and $x \in S$. Since $f_{n} \rightarrow f$ pointwise there is $N_{1} \in \mathbb{N}$ such that $n>N_{1}$ implies $\left|f_{n}(x)-f(x)\right|<\varepsilon / 2$. Similarly there is $N_{2} \in \mathbb{N}$ such that $n>N_{2}$ implies $\left|g_{n}(x)-g(x)\right|<\varepsilon / 2$. Let $N=\max \left\{N_{1}, N_{2}\right\}$ and $n>N$ implies

$$
\left|f_{n}(x)+g_{n}(x)-f(x)-g(x)\right| \leq\left|f_{n}(x)-f(x)\right|+\left|g_{n}(x)-g(x)\right|<\varepsilon
$$

so $f_{n}+g_{n}=h_{n} \rightarrow f+g$ pointwise.
(b) The exact same argument as above works. Instead one does not choose a specific $x \in S$ at the first place to account for uniform convergence.
3. Suppose for a contradiction that there is $x, y \in(a, b)$ with $x<y$ such that $f(y)<f(x)$. Let $\varepsilon=$ $f(x)-f(y)>0$. Since $f_{n} \rightarrow f$ pointwise, there is N_{1} such that $n>N_{1}$ implies

$$
\left|f_{n}(x)-f(x)\right|<\varepsilon / 3 \Longrightarrow f_{n}(x)>f(x)-\varepsilon / 3
$$

Similarly there is N_{2} such that $n>N_{2}$ implies

$$
\left|f_{n}(y)-f(y)\right|<\varepsilon / 3 \Longrightarrow f_{n}(y)<f(y)+\varepsilon / 3
$$

Let $N=\max \left\{N_{1}, N_{2}\right\}$ and $n>N$ implies that

$$
f_{n}(y)-f_{n}(x)<f(y)+\varepsilon / 3-f(x)+\varepsilon / 3=-\varepsilon+2 \varepsilon / 3=-\varepsilon / 3<0
$$

a contradiction since f_{n} is non-decreasing.
4. Let $\varepsilon>0$. Since f is uniformly continuous, there is $\delta>0$ such that $|x-y|<\delta$ implies $|f(x)-f(y)|<\varepsilon$. Choose N such that $\frac{1}{N}<\delta$, then $n>N$ implies

$$
\left|f_{n}(x)-f(x)\right|=|f(x+1 / n)-f(x)|<\varepsilon
$$

so $f_{n} \rightarrow f$ uniformly.
5. (a) Since h is continuous on $[a, b], h$ is uniformly continuous on $[a, b]$ (bounded interval implies uniform continuity), therefore f is also uniformly continuous (since it is constant outside of $[a, b]$). f is clearly bounded.
(b) By the fundamental theorem of calculus we have

$$
f_{n}^{\prime}(x)=\frac{n}{2}(f(x+1 / n)-f(x-1 / n))
$$

which is uniformly continuous (since composition of uniformly continuous functions is still uniformly continuous). Moreover,

$$
\left|f_{n}(x)\right| \leq \frac{n}{2}(x+1 / n-(x-1 / n)) \sup _{x \in(x-1 / n, x+1 / n)}|f(x)| \leq\|f\|_{u}
$$

So $\left\|f_{n}\right\|_{u} \leq\|f\|_{u}$.
(c) Let $\varepsilon>0$. Since f is uniformly continuous, there is $\delta>0$ such that $|x-y|<\delta$ implies $|f(x)-f(y)|<\varepsilon$. Choose N such that $1 / N<\delta$. For $n>N$ we have

$$
\begin{aligned}
\left|f_{n}(x)-f(x)\right| & =\frac{n}{2}\left|\int_{x-1 / n}^{x+1 / n} f(t) d t-\int_{x-1 / n}^{x+1 / n} f(x) d t\right| \leq \frac{n}{2} \int_{x-1 / n}^{x+1 / n}|f(x)-f(t)| d t \\
& \leq \frac{n}{2} \int_{x-1 / n}^{x+1 / n} \varepsilon d t=\frac{n}{2} \cdot \frac{2}{n} \varepsilon=\varepsilon
\end{aligned}
$$

(since $|t-x|<1 / n<\delta$ for $t \in(x-1 / n, x+1 / n))$ so $f_{n} \rightarrow f$ uniformly on \mathbb{R}. In particular, $f_{n} \rightarrow h$ uniformly on $[a, b]$.
6. (a) The function clearly has no issues for $x \neq 0$. We need to check that $\lim _{x \rightarrow 0} P(1 / x) \phi(x)=0$ for any polynomial P. By linearity of the limit it suffices to show for $P(x)=x^{n}$ for $n \in \mathbb{N} \cup\{0\}$.
We use induction. This is clearly true for $n=0$. Suppose the claim is true for all $n=k$, then for $n=k+1$ by L'Hopital's rule we have

$$
\lim _{x \rightarrow 0} x^{-(k+1)} e^{-1 / x}=\lim _{x \rightarrow 0} \frac{x^{-(k+1)}}{e^{1 / x}}=\lim _{x \rightarrow 0} \frac{-(k+1) x^{-(k+2)}}{-x^{-2} e^{1 / x}}=\lim _{x \rightarrow 0} \frac{(k+1) x^{-k}}{e^{1 / x}}=0
$$

Hence by induction we have $\lim _{x \rightarrow 0} x^{-n} e^{-1 / x}=0$ for all $n \in \mathbb{N}$. Thus $f(x)$ is continuous.
(b) We use induction again. For $k=0$ the statement is clearly true. Suppose $\phi^{(k)}(x)=P_{k}(1 / x) \phi(x)$ for some polynomial P_{k}. For $x>0$ using the chain rule we have

$$
\phi^{(k+1)}(x)=P_{k}^{\prime}(1 / x) \cdot\left(-\frac{1}{x^{2}}\right) \phi(x)+\left(\frac{1}{x^{2}} P_{k}(1 / x)\right) \phi(x)=\left(\left(-x^{2} P_{k}^{\prime}\right)(1 / x)+\left(x^{2} P_{k}\right)(1 / x)\right) \phi(x)
$$

which is again of the form $P_{k+1}(1 / x) \phi(x)$, where

$$
P_{k+1}(x)=-x^{2} P_{k}^{\prime}+x^{2} P_{k}
$$

is again a polynomial. For $x<0$ clearly $\phi^{(k+1)}(x)=P_{k+1}(1 / x) \phi(x)$ still holds since $\phi(x)$ is identically 0 . Finally we have

$$
\lim _{x \rightarrow 0} \phi^{(k+1)}(x)=0
$$

by part (a). So $\phi^{(k+1)}(x)$ is a continuous function of the form $\phi^{(k+1)}(x)=P_{k+1}(x) \phi(x)$ for all $x \in \mathbb{R}$. Consequently it is a smooth function on \mathbb{R} by part (a).
7. (a) Consider $\psi(x)=\phi((x-a)(b-x))$ for $x \in(a, b)$. Clearly when $x \leq a$ or $x \geq b$ we have $\psi(x)=0$, and when $x \in(a, b)$ we have $\psi(x)>0$ sicne $(x-a)(b-x)>0$. Moreover ψ is smooth since ϕ is.
(b) Let

$$
C=\int_{a}^{b} \psi(x) d x
$$

(which can be computed explicitly). Now define

$$
\eta(x)=\frac{1}{C} \int_{-\infty}^{x} \psi(t) d t
$$

Clearly η is again a smooth function. Moreover when $x<a, \eta(x)=0$ since $\psi(x)=0$, and when $x>b$ we have

$$
\eta(x)=\frac{1}{C} \int_{-\infty}^{b} \psi(t) d t=\frac{1}{C} \int_{a}^{b} \psi(t) d t=1
$$

Finally when $x \in(a, b)$ we must have $0 \leq \eta(x) \leq 1$ since $\eta(x)$ is clearly increasing.
(c) Let $\psi_{1}(x)$ be the function as constructed in part (b) such that $\psi_{1}(x)=0$ for $x \leq a$ and $x=1$ for $x \geq c$. Let $\psi_{2}(x)$ be the function as constructed in part (b) such that $\psi_{2}(x)=0$ for $x \leq d$ and $\psi_{2}(x)=1$ for $x \geq b$. Consider $\zeta(x)=\psi_{1}(x)-\psi_{2}(x)$ which is clearly smooth. For $x \leq a$ we have $\psi_{1}(x)=\psi_{2}(x)=0$. For $a \leq x \leq c$ we have $\zeta(x)=\psi_{1}(x)$ which is between 0 and 1 . For $c \leq x \leq d$ we again have $\zeta(x)=\psi_{1}(x)$ which is identically 1 . For $d \leq x \leq b$ we have $\zeta(x)=1-\psi_{2}(x)$ which is again between 0 and 1 . Finally for $x \geq b$ we have $\zeta(x)=1-1=0$ again. So this is precisely what we want.

