1. Recall that

$$||f||_{u} = \sup\{|f(x)| \mid x \in S\}$$

(a) By triangle inequality we have

$$|f(x) + g(x)| \le |f(x)| + |g(x)|$$

Taking supremum both sides and using

$$\sup_{x \in S} (|f(x)| + |g(x)|) \le \sup_{x \in S} |f(x)| + \sup_{x \in S} |g(x)|$$

gives the inequality.

(b) Clearly

$$|f(x)g(x)| = |f(x)| |g(x)|$$

Taking supremum both sides and using

$$\sup_{x \in S} |f(x)| |g(x)| \le \left(\sup_{x \in S} |f(x)| \right) \left(\sup_{x \in S} |g(x)| \right)$$

(since |f| and |g| are nonnegative) gives the inequality.

2. (a) Let $\varepsilon > 0$ and $x \in S$. Since $f_n \to f$ pointwise there is $N_1 \in \mathbb{N}$ such that $n > N_1$ implies $|f_n(x) - f(x)| < \varepsilon/2$. Similarly there is $N_2 \in \mathbb{N}$ such that $n > N_2$ implies $|g_n(x) - g(x)| < \varepsilon/2$. Let $N = \max\{N_1, N_2\}$ and n > N implies

$$|f_n(x) + g_n(x) - f(x) - g(x)| \le |f_n(x) - f(x)| + |g_n(x) - g(x)| < \varepsilon$$

so $f_n + g_n = h_n \to f + g$ pointwise.

- (b) The exact same argument as above works. Instead one does not choose a specific $x \in S$ at the first place to account for uniform convergence.
- 3. Suppose for a contradiction that there is $x, y \in (a, b)$ with x < y such that f(y) < f(x). Let $\varepsilon = f(x) f(y) > 0$. Since $f_n \to f$ pointwise, there is N_1 such that $n > N_1$ implies

$$|f_n(x) - f(x)| < \varepsilon/3 \implies f_n(x) > f(x) - \varepsilon/3$$

Similarly there is N_2 such that $n > N_2$ implies

$$|f_n(y) - f(y)| < \varepsilon/3 \implies f_n(y) < f(y) + \varepsilon/3$$

Let $N = \max\{N_1, N_2\}$ and n > N implies that

$$f_n(y) - f_n(x) < f(y) + \varepsilon/3 - f(x) + \varepsilon/3 = -\varepsilon + 2\varepsilon/3 = -\varepsilon/3 < 0$$

a contradiction since f_n is non-decreasing.

4. Let $\varepsilon > 0$. Since f is uniformly continuous, there is $\delta > 0$ such that $|x - y| < \delta$ implies $|f(x) - f(y)| < \varepsilon$. Choose N such that $\frac{1}{N} < \delta$, then n > N implies

$$|f_n(x) - f(x)| = |f(x + 1/n) - f(x)| < \varepsilon$$

so $f_n \to f$ uniformly.

5. (a) Since h is continuous on [a, b], h is uniformly continuous on [a, b] (bounded interval implies uniform continuity), therefore f is also uniformly continuous (since it is constant outside of [a, b]). f is clearly bounded.

(b) By the fundamental theorem of calculus we have

$$f'_n(x) = \frac{n}{2}(f(x+1/n) - f(x-1/n))$$

which is uniformly continuous (since composition of uniformly continuous functions is still uniformly continuous). Moreover,

$$|f_n(x)| \le \frac{n}{2}(x + 1/n - (x - 1/n)) \sup_{x \in (x - 1/n, x + 1/n)} |f(x)| \le ||f||_u$$

So $||f_n||_u \leq ||f||_u$.

(c) Let $\varepsilon > 0$. Since f is uniformly continuous, there is $\delta > 0$ such that $|x - y| < \delta$ implies $|f(x) - f(y)| < \varepsilon$. Choose N such that $1/N < \delta$. For n > N we have

$$\begin{aligned} |f_n(x) - f(x)| &= \frac{n}{2} \left| \int_{x-1/n}^{x+1/n} f(t) dt - \int_{x-1/n}^{x+1/n} f(x) dt \right| &\le \frac{n}{2} \int_{x-1/n}^{x+1/n} |f(x) - f(t)| \, dt \\ &\le \frac{n}{2} \int_{x-1/n}^{x+1/n} \varepsilon dt = \frac{n}{2} \cdot \frac{2}{n} \varepsilon = \varepsilon \end{aligned}$$

(since $|t-x| < 1/n < \delta$ for $t \in (x-1/n, x+1/n)$) so $f_n \to f$ uniformly on \mathbb{R} . In particular, $f_n \to h$ uniformly on [a, b].

6. (a) The function clearly has no issues for x ≠ 0. We need to check that lim_{x→0} P(1/x)φ(x) = 0 for any polynomial P. By linearity of the limit it suffices to show for P(x) = xⁿ for n ∈ N ∪ {0}. We use induction. This is clearly true for n = 0. Suppose the claim is true for all n = k, then for n = k + 1 by L'Hopital's rule we have

$$\lim_{x \to 0} x^{-(k+1)} e^{-1/x} = \lim_{x \to 0} \frac{x^{-(k+1)}}{e^{1/x}} = \lim_{x \to 0} \frac{-(k+1)x^{-(k+2)}}{-x^{-2}e^{1/x}} = \lim_{x \to 0} \frac{(k+1)x^{-k}}{e^{1/x}} = 0$$

Hence by induction we have $\lim_{x\to 0} x^{-n} e^{-1/x} = 0$ for all $n \in \mathbb{N}$. Thus f(x) is continuous.

(b) We use induction again. For k = 0 the statement is clearly true. Suppose $\phi^{(k)}(x) = P_k(1/x)\phi(x)$ for some polynomial P_k . For x > 0 using the chain rule we have

$$\phi^{(k+1)}(x) = P'_k(1/x) \cdot (-\frac{1}{x^2})\phi(x) + (\frac{1}{x^2}P_k(1/x))\phi(x) = ((-x^2P'_k)(1/x) + (x^2P_k)(1/x))\phi(x)$$

which is again of the form $P_{k+1}(1/x)\phi(x)$, where

$$P_{k+1}(x) = -x^2 P'_k + x^2 P_k$$

is again a polynomial. For x < 0 clearly $\phi^{(k+1)}(x) = P_{k+1}(1/x)\phi(x)$ still holds since $\phi(x)$ is identically 0. Finally we have

$$\lim_{x \to 0} \phi^{(k+1)}(x) = 0$$

by part (a). So $\phi^{(k+1)}(x)$ is a continuous function of the form $\phi^{(k+1)}(x) = P_{k+1}(x)\phi(x)$ for all $x \in \mathbb{R}$. Consequently it is a smooth function on \mathbb{R} by part (a).

7. (a) Consider $\psi(x) = \phi((x-a)(b-x))$ for $x \in (a,b)$. Clearly when $x \le a$ or $x \ge b$ we have $\psi(x) = 0$, and when $x \in (a,b)$ we have $\psi(x) > 0$ sicne (x-a)(b-x) > 0. Moreover ψ is smooth since ϕ is.

(b) Let

$$C = \int_{a}^{b} \psi(x) dx$$

(which can be computed explicitly). Now define

$$\eta(x) = \frac{1}{C} \int_{-\infty}^{x} \psi(t) dt$$

Clearly η is again a smooth function. Moreover when x < a, $\eta(x) = 0$ since $\psi(x) = 0$, and when x > b we have

$$\eta(x) = \frac{1}{C} \int_{-\infty}^{b} \psi(t) dt = \frac{1}{C} \int_{a}^{b} \psi(t) dt = 1$$

Finally when $x \in (a, b)$ we must have $0 \le \eta(x) \le 1$ since $\eta(x)$ is clearly increasing.

(c) Let $\psi_1(x)$ be the function as constructed in part (b) such that $\psi_1(x) = 0$ for $x \le a$ and x = 1 for $x \ge c$. Let $\psi_2(x)$ be the function as constructed in part (b) such that $\psi_2(x) = 0$ for $x \le d$ and $\psi_2(x) = 1$ for $x \ge b$. Consider $\zeta(x) = \psi_1(x) - \psi_2(x)$ which is clearly smooth. For $x \le a$ we have $\psi_1(x) = \psi_2(x) = 0$. For $a \le x \le c$ we have $\zeta(x) = \psi_1(x)$ which is between 0 and 1. For $c \le x \le d$ we again have $\zeta(x) = \psi_1(x)$ which is identically 1. For $d \le x \le b$ we have $\zeta(x) = 1 - \psi_2(x)$ which is precisely what we want.