
1. Let ε > 0. Since f is Riemann integrable, there is a partition P1 = {x′0, . . . , x′n1
} such that

U(P1, f)− L(P1, f) <
ε

2

(This follows by choosing a partition Q1 such that U(Q1, f) − infP U(P, f) < ε/2 and a partition Q2

such that supP L(P, f)− L(Q2, f) < ε/2, then take a common refinement of Q1 and Q2). This means
for any x

′∗
k ∈ [x′k−1, x

′
k] we have

U(P1, f)−
n1∑
k=1

f(x
′∗
k )∆x′k < U(P, f)− L(P1, f) <

ε

2

Since f is Riemann integrable there is another partition P2 such that∣∣∣∣∣U(P2, f)−
∫ b

a

f(x)dx

∣∣∣∣∣ < ε

2

Let P = {x0, . . . , xn} be a common refinement of P1 and P2, then we have by triangle inequality∣∣∣∣∣
∫ b

a

f(x)dx−
n∑
k=1

f(x∗k)∆xk

∣∣∣∣∣ <
∣∣∣∣∣
∫ b

a

f(x)dx− U(P, f)

∣∣∣∣∣+

∣∣∣∣∣U(P, f)−
n∑
k=1

f(x∗k)∆xk

∣∣∣∣∣ < ε

2. Since f is continuous on a bounded interval, we can bound f by f(x1) ≤ f(x) ≤ f(x2) for some
x1, x2 ∈ [a, b]. Therefore appealing to Riemann sum we have

f(x1)(b− a) ≤
∫ b

a

f(x)dx ≤ f(x2)(b− a)

Intermediate value theorem applied to the function g(x) = f(x)(b−a) says that there is c ∈ [x1, x2] (or
[x2, x1], depending on the order) such that

f(c)(b− a) =

∫ b

a

f(x)dx

3. Split the interval as [a, c] and [c, b]. Consider cn = c− 1
n (for n sufficiently large). Then since f = g on

[a, cn] we have that g is integrable on [a, cn] with∫ cn

a

f(x)dx =

∫ cn

a

g(x)dx

Now by Lemma 5.2.8 we may pass to the limit to conclude that g is integrable on [a, c] and that∫ c

a

g(x)dx = lim
n→∞

∫ cn

a

g(x)dx = lim
n→∞

∫ cn

a

f(x)dx =

∫ c

a

f(x)dx

Doing the same thing on [c, b] and adding up the integral gives the required result.

4. Since f is continuous, so is |f |, so we have that |f | is Riemann integrable and that (since f ≤ |f |)∣∣∣∣∣
∫ b

a

f(x)dx

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ b

a

|f(x)| dx

∣∣∣∣∣ =

∫ b

a

|f(x)| dx

When f is only Riemann integrable, the problem becomes much harder since we do not know if |f |
is Riemann integrable (so one has to work directly with Riemann sums to prove that |f | is Riemann
integrable).

5. Since f is monotonically increasing on [a, b] we have that f(a) ≤ f(x) ≤ f(b) for x ∈ [a, b]. Now let
ε > 0, and consider a uniform partition Pn of length b−a

n of [a, b] (so that x0 = a, x1 = a+ b−a
n , etc.).

Then we have by monotonicity

U(Pn, f)− L(Pn, f) =

n∑
k=1

(f(xk)− f(xk−1))
b− a
n
≤ b− a

n

n∑
k=1

f(xk)− f(xk−1) =
b− a
n

(f(b)− f(a))

since the sum telescopes. It follows that if we choose n sufficiently large we have U(Pn, f)−L(Pn, f) < ε,
so f is Riemann integrable.
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6. (a) First we show that f(x) = 0 on (a, b). Suppose for a contradiction that there is some x0 ∈ (a, b)
such that f(x0) 6= 0. Without loss of generality we may assume f(x0) > 0. Since f is continuous,

there is δ > 0 such that |x− x0| < δ =⇒ f(x) > f(x0)
2 . This means that∫ b

a

f(x)2dx ≥
∫ x0+δ

x0−δ
f(x)2dx > 2δ

f(x0)2

4
> 0

a contradiction.

Now suppose again for a contradiction that f(a) > 0. The same idea works except one can only

use a one-sided interval, i.e. there is δ > 0 such that x− a < δ =⇒ f(x) > f(a)
2 . The rest is very

similar.

(b) We first show that f(x) = 0 on (a, b). Suppose for a contradiction (as above) that there is

x0 ∈ (a, b) such that f(x0) > 0. Again there is δ such that |x− x0| < δ =⇒ f(x) > f(x0)
2 .

Let φ be a function that agrees with f on (x0 − δ/2, x0 + δ/2), linear on (x0 − δ, x0 − δ/2) and
(x0 + δ/2, x0 + δ) with φ(x0 − δ) = φ(x0 + δ) = 0, and 0 elsewhere. It is easy to see that φ is
continuous, and that ∫ b

a

f(x)φ(x)dx ≥
∫ x0+δ/2

x0−δ/2
f(x)2dx > δ

f(x0)2

4
> 0

a contradiction.

Now suppose for a contradiction that f(a) > 0. Again we find δ such that x− a < δ =⇒ f(x) >
f(a)
2 . Let φ be a function that agrees with f on [a + δ/4, a + δ/2], linear on [a, a + δ/4) and

(a+ δ/2, a+ δ] with φ(a) = φ(a+ δ) = 0, and 0 elsewhere. Again φ is continuous and∫ b

a

f(x)φ(x)dx ≥
∫ a+δ/2

a+δ/4

f(x)2dx >
δ

4

f(a)2

4
> 0

a contradiction. So f must be identically 0.

7. This follows from the fundamental theorem of calculus and the product rule, i.e.∫ b

a

F (x)G′(x) + F ′(x)G(x)dx =

∫ b

a

(F (x)G(x))′dx = F (b)G(b)− F (a)G(a)

8. By the fundamental theorem of calculus we have for x ∈ (0, 2),

f(x)− f(0) =

∫ x

0

f ′(y)dy ≥
∫ x

0

ydy =
1

2
x2

which implies f(x) ≥ 1
2x

2 since f(0) = 0.

On the other hand for x ∈ (−2, 0] we have

f(0)− f(x) =

∫ 0

x

f ′(y)dy ≥
∫ 0

x

ydy = −1

2
x2

So we get f(x) ≤ 1
2x

2 instead.
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