1. Let $\varepsilon>0$. Since f is Riemann integrable, there is a partition $P_{1}=\left\{x_{0}^{\prime}, \ldots, x_{n_{1}}^{\prime}\right\}$ such that

$$
U\left(P_{1}, f\right)-L\left(P_{1}, f\right)<\frac{\varepsilon}{2}
$$

(This follows by choosing a partition Q_{1} such that $U\left(Q_{1}, f\right)-\inf _{P} U(P, f)<\varepsilon / 2$ and a partition Q_{2} such that $\sup _{P} L(P, f)-L\left(Q_{2}, f\right)<\varepsilon / 2$, then take a common refinement of Q_{1} and $\left.Q_{2}\right)$. This means for any $x_{k}^{\prime *} \in\left[x_{k-1}^{\prime}, x_{k}^{\prime}\right]$ we have

$$
U\left(P_{1}, f\right)-\sum_{k=1}^{n_{1}} f\left(x_{k}^{*}\right) \Delta x_{k}^{\prime}<U(P, f)-L\left(P_{1}, f\right)<\frac{\varepsilon}{2}
$$

Since f is Riemann integrable there is another partition P_{2} such that

$$
\left|U\left(P_{2}, f\right)-\int_{a}^{b} f(x) d x\right|<\frac{\varepsilon}{2}
$$

Let $P=\left\{x_{0}, \ldots, x_{n}\right\}$ be a common refinement of P_{1} and P_{2}, then we have by triangle inequality

$$
\left|\int_{a}^{b} f(x) d x-\sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x_{k}\right|<\left|\int_{a}^{b} f(x) d x-U(P, f)\right|+\left|U(P, f)-\sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x_{k}\right|<\varepsilon
$$

2. Since f is continuous on a bounded interval, we can bound f by $f\left(x_{1}\right) \leq f(x) \leq f\left(x_{2}\right)$ for some $x_{1}, x_{2} \in[a, b]$. Therefore appealing to Riemann sum we have

$$
f\left(x_{1}\right)(b-a) \leq \int_{a}^{b} f(x) d x \leq f\left(x_{2}\right)(b-a)
$$

Intermediate value theorem applied to the function $g(x)=f(x)(b-a)$ says that there is $c \in\left[x_{1}, x_{2}\right]$ (or [x_{2}, x_{1}], depending on the order) such that

$$
f(c)(b-a)=\int_{a}^{b} f(x) d x
$$

3. Split the interval as $[a, c]$ and $[c, b]$. Consider $c_{n}=c-\frac{1}{n}$ (for n sufficiently large). Then since $f=g$ on [a, c_{n}] we have that g is integrable on $\left[a, c_{n}\right.$] with

$$
\int_{a}^{c_{n}} f(x) d x=\int_{a}^{c_{n}} g(x) d x
$$

Now by Lemma 5.2 .8 we may pass to the limit to conclude that g is integrable on $[a, c]$ and that

$$
\int_{a}^{c} g(x) d x=\lim _{n \rightarrow \infty} \int_{a}^{c_{n}} g(x) d x=\lim _{n \rightarrow \infty} \int_{a}^{c_{n}} f(x) d x=\int_{a}^{c} f(x) d x
$$

Doing the same thing on $[c, b]$ and adding up the integral gives the required result.
4. Since f is continuous, so is $|f|$, so we have that $|f|$ is Riemann integrable and that (since $f \leq|f|$)

$$
\left|\int_{a}^{b} f(x) d x\right| \leq\left|\int_{a}^{b}\right| f(x)|d x|=\int_{a}^{b}|f(x)| d x
$$

When f is only Riemann integrable, the problem becomes much harder since we do not know if $|f|$ is Riemann integrable (so one has to work directly with Riemann sums to prove that $|f|$ is Riemann integrable).
5. Since f is monotonically increasing on $[a, b]$ we have that $f(a) \leq f(x) \leq f(b)$ for $x \in[a, b]$. Now let $\varepsilon>0$, and consider a uniform partition P_{n} of length $\frac{b-a}{n}$ of $[a, b]$ (so that $x_{0}=a, x_{1}=a+\frac{b-a}{n}$, etc.). Then we have by monotonicity

$$
U\left(P_{n}, f\right)-L\left(P_{n}, f\right)=\sum_{k=1}^{n}\left(f\left(x_{k}\right)-f\left(x_{k-1}\right)\right) \frac{b-a}{n} \leq \frac{b-a}{n} \sum_{k=1}^{n} f\left(x_{k}\right)-f\left(x_{k-1}\right)=\frac{b-a}{n}(f(b)-f(a))
$$

since the sum telescopes. It follows that if we choose n sufficiently large we have $U\left(P_{n}, f\right)-L\left(P_{n}, f\right)<\varepsilon$, so f is Riemann integrable.
6. (a) First we show that $f(x)=0$ on (a, b). Suppose for a contradiction that there is some $x_{0} \in(a, b)$ such that $f\left(x_{0}\right) \neq 0$. Without loss of generality we may assume $f\left(x_{0}\right)>0$. Since f is continuous, there is $\delta>0$ such that $\left|x-x_{0}\right|<\delta \Longrightarrow f(x)>\frac{f\left(x_{0}\right)}{2}$. This means that

$$
\int_{a}^{b} f(x)^{2} d x \geq \int_{x_{0}-\delta}^{x_{0}+\delta} f(x)^{2} d x>2 \delta \frac{f\left(x_{0}\right)^{2}}{4}>0
$$

a contradiction.
Now suppose again for a contradiction that $f(a)>0$. The same idea works except one can only use a one-sided interval, i.e. there is $\delta>0$ such that $x-a<\delta \Longrightarrow f(x)>\frac{f(a)}{2}$. The rest is very similar.
(b) We first show that $f(x)=0$ on (a, b). Suppose for a contradiction (as above) that there is $x_{0} \in(a, b)$ such that $f\left(x_{0}\right)>0$. Again there is δ such that $\left|x-x_{0}\right|<\delta \Longrightarrow f(x)>\frac{f\left(x_{0}\right)}{2}$. Let ϕ be a function that agrees with f on ($x_{0}-\delta / 2, x_{0}+\delta / 2$), linear on ($x_{0}-\delta, x_{0}-\delta / 2$) and $\left(x_{0}+\delta / 2, x_{0}+\delta\right)$ with $\phi\left(x_{0}-\delta\right)=\phi\left(x_{0}+\delta\right)=0$, and 0 elsewhere. It is easy to see that ϕ is continuous, and that

$$
\int_{a}^{b} f(x) \phi(x) d x \geq \int_{x_{0}-\delta / 2}^{x_{0}+\delta / 2} f(x)^{2} d x>\delta \frac{f\left(x_{0}\right)^{2}}{4}>0
$$

a contradiction.
Now suppose for a contradiction that $f(a)>0$. Again we find δ such that $x-a<\delta \Longrightarrow f(x)>$ $\frac{f(a)}{2}$. Let ϕ be a function that agrees with f on $[a+\delta / 4, a+\delta / 2]$, linear on $[a, a+\delta / 4)$ and $(a+\delta / 2, a+\delta]$ with $\phi(a)=\phi(a+\delta)=0$, and 0 elsewhere. Again ϕ is continuous and

$$
\int_{a}^{b} f(x) \phi(x) d x \geq \int_{a+\delta / 4}^{a+\delta / 2} f(x)^{2} d x>\frac{\delta}{4} \frac{f(a)^{2}}{4}>0
$$

a contradiction. So f must be identically 0 .
7. This follows from the fundamental theorem of calculus and the product rule, i.e.

$$
\int_{a}^{b} F(x) G^{\prime}(x)+F^{\prime}(x) G(x) d x=\int_{a}^{b}(F(x) G(x))^{\prime} d x=F(b) G(b)-F(a) G(a)
$$

8. By the fundamental theorem of calculus we have for $x \in(0,2)$,

$$
f(x)-f(0)=\int_{0}^{x} f^{\prime}(y) d y \geq \int_{0}^{x} y d y=\frac{1}{2} x^{2}
$$

which implies $f(x) \geq \frac{1}{2} x^{2}$ since $f(0)=0$.
On the other hand for $x \in(-2,0]$ we have

$$
f(0)-f(x)=\int_{x}^{0} f^{\prime}(y) d y \geq \int_{x}^{0} y d y=-\frac{1}{2} x^{2}
$$

So we get $f(x) \leq \frac{1}{2} x^{2}$ instead.

