
1. (a) Since f is differentiable at x0, M = max{|f ′(x)| | x ∈ [x0−1, x0+1]} is well-defined, and moreover
there is 1 > δ > 0 such that |x− x0| < δ implies∣∣∣∣f(x)− f(x0)

x− x0

∣∣∣∣ ≤ 2M =⇒ |f(x)− f(x0)| < 2M |x− x0|

Hence for |x− x0| < δ we have by triangle inequality

|g(x)− f(x)| ≤ |g(x)− f(x0)|+ |f(x)− f(x0)| < |m| |x− x0|+ 2M |x− x0|

so the claim holds with C = |m|+ 2M .

(b) Suppose first that m = f ′(x0), then

|f(x)− g(x)|
|x− x0|

=

∣∣∣∣f(x)− f(x0)

x− x0
− f ′(x0)

∣∣∣∣
Since f is differentiable at x0, we have

lim
x→x0

f(x)− f(x0)

x− x0
= f ′(x0)

so given any ε > 0 there is δ > 0 such that |x− x0| < δ implies∣∣∣∣f(x)− f(x0)

x− x0
− f ′(x0)

∣∣∣∣ < ε =⇒ |f(x)− g(x)| < ε |x− x0|

Conversely suppose that given ε > 0 there is δ > 0 such that |x− x0| < δ implies

|f(x)− g(x)| < ε |x− x0| =⇒
∣∣∣∣f(x)− f(x0)

x− x0
−m

∣∣∣∣ < ε

This means that

lim
x→x0

f(x)− f(x0)

x− x0
= m

and uniqueness of limit shows that m = f ′(x0).

2. We show that such an f must not be differentiable at 0. Suppose for a contradiction that there is an
f differentiable everywhere on (−2, 2). Consider the difference quotient

f(h)− f(0)

h

When h > 0, by the mean value theorem we have

f(h)− f(0)

h
= f ′(c) = −1

for some c ∈ (0, h). On the other hand when h < 0 we have

f(h)− f(0)

h
= f ′(c) = 1

for some c ∈ (h, 0), so the limit as h→ 0 cannot exist and this is a contradiction.

3. We show that f ′(x) = 0 everywhere so that mean value theorem implies that f is constant. Indeed let
x ∈ R and by assumption

|f ′(x)| = lim
h→0

∣∣∣∣f(x+ h)− f(x)

h

∣∣∣∣ ≤ lim
h→0

∣∣∣∣∣C |h|1+ε

h

∣∣∣∣∣ = lim
h→0

C |h|ε = 0

so f ′(x) = 0.
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4. (a) By mean value theorem we have that for x ∈ (0, 1) there is some c ∈ (0, x) such that

f(x)− f(0)

x
= f ′(c) ≤ c < x

Since f(0) = 0 this gives f(x) ≤ x2.

(b) Consider g(x) = f(x) − x2

2 . Then g′(x) = f ′(x) − x ≤ 0, so g is a decreasing function. Since

g(0) = 0 we have g(x) ≤ 0 for all x ∈ [0, 1], and it follows that f(x) ≤ x2

2 .

5. (a) Suppose for a contradiction that there is c′ ∈ (a, b) such that f(c′) < f(c). By convexity we have
for all t ∈ [0, 1] that

f(tc+ (1− t)c′) ≤ tf(c) + (1− t)f(c′) < f(c)

Since c is a relative minimum there is δ > 0 such that |d− c| < δ implies f(c) ≤ f(d). Choose t
close enough to 1 such that

|tc+ (1− t)c′ − c| = |1− t| |c− c′| < δ

then it follows that

f(tc+ (1− t)c′) < f(c) ≤ f(tc+ (1− t)c′)

which is a contradiction. So c is indeed an absolute minimum for f .

(b) Let d ∈ [a, c) and e ∈ (c, b]. Let t ∈ (0, 1) be chosen so that c = td+ (1− t)e. Then we have, since
c is an absolute maximum,

f(c) ≤ tf(d) + (1− t)f(e) ≤ f(c)

The inequality can only hold if f(d) = f(e) = f(c). Since d and e are arbitrary it follows that
f = f(c) is constant.

6. As the hint suggests for fixed x, y ∈ (a, b) with x < y we consider g(t) = f(tx+ (1− t)y)− tf(x)− (1−
t)f(y). We compute

g′(t) = (x− y)f ′(tx+ (1− t)y)− f ′(x) + f ′(y)

and

g′′(t) = (x− y)2f ′′(tx+ (1− t)y) ≥ 0

since f ′′(x) ≥ 0, i.e. g′(t) is an increasing function of t. Now we note that g(0) = g(1) = 0, and suppose
for a contradiction that there is t ∈ (0, 1) such that g(t) > 0. By mean value theorem we have that
there is t1 ∈ (0, t) such that

g′(t1) =
g(t)− g(0)

t
> 0

and t2 ∈ (t, 1) such that

g′(t2) =
g(1)− g(t)

1− t
< 0

but this contradicts the fact that g′(t) is increasing. Hence we must have g(t) ≤ 0 and from there it
follows that

g(t) ≤ 0 ⇐⇒ f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

Since x, y are arbitrary this finishes the proof.
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7. We have

f(x) =

{
x3 x > 0

−x3 x < 0

So away from zero we have

f ′(x) =

{
3x2 x > 0

−3x2 x < 0

One checks that f ′ is continuous at 0, so f is differentiable with f ′(x) = 3 sgn(x)x2. Again one computes

f ′′(x) =

{
6x x > 0

−6x x < 0

and checks that f ′′ is continuous at 0, so f ′′ = 6 |x|. It is now standard to check that the absolute value
function is not differentiable at 0.

8. It is helpful to note that f is an increasing function on [0, 1] so that mi|[ai,ai+1] = f(ai) and Mi|[ai,ai+1] =
f(ai+1). With these we have

L(P, f) = 0.1× f(0) + 0.3× f(0.1) + 0.6× f(0.4) = 0.0003 + 0.0384 = 0.0387

U(P, f) = 0.1× f(0.1) + 0.3× f(0.4) + 0.6× f(1) = 0.0001 + 0.0192 + 0.6 = 0.6293
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