1. We will show that the max function $M(x)$ is continuous. The case for min $m(x)$ is similar. Let $x \in S$. Suppose first that $f(x)>g(x)$. Then by Problem 7 in PS5, there is $\delta>0$ such that $|y-x|<\delta$ implies $f(y)-g(y)>0$. Consequently if $|y-x|<\delta$ we have $M(y)=f(y)$, and it follows that M is continuous at x since f is continuous. Similarly we can deal with the case when $g(x)>f(x)$.
Thus it remains to consider the case when $f(x)=g(x)=L$. Let $\varepsilon>0$. Since f and g are both continuous, there are δ_{1}, δ_{2} respectively such that $|y-x|<\delta_{1} \Longrightarrow|f(y)-L|<\varepsilon$ and $|y-x|<$ $\delta_{2} \Longrightarrow|g(y)-L|<\varepsilon$. Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. It follows that if $|y-x|<\delta$ we have

$$
|M(y)-M(x)|=|M(y)-L|=\left\{\begin{array}{ll}
|g(y)-L| & g(y)>f(y) \\
|f(y)-L| & g(y) \leq f(y)
\end{array}<\varepsilon\right.
$$

So M is continuous at x.
2. Consider $g(x)=f(x)-x$. Then $g(0)=f(0) \geq 0$. If $g(0)=0$ then $f(0)=0$ and we are done since we can take $c=0$. So we may assume $g(0)>0$. Moreover $g(1)=f(1)-1 \leq 0$. If $g(1)=0$ then we are also done since $f(1)=1$, so we may assume $g(1)<0$. But then intermediate value theorem implies there is $c \in(0,1)$ such that $g(c)=0 \Longrightarrow f(c)=c$.
3. (a) Take for example $f(x)=\frac{1}{2}$ for $x \in[0,1]$.
(b) Suppose for a contradiction that f is onto. Let $x_{n} \in[0,1]$ be such that $f\left(x_{n}\right)=\frac{1}{n}$. By BolzanoWeierstrass we may extract a subsequence $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ such that $x_{n_{k}} \rightarrow x \in[0,1]$. Since f is continuous it follows that

$$
0=\lim _{k \rightarrow \infty} \frac{1}{n_{k}}=\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right)=f(x)
$$

which is a contradiction since 0 is not in the range of f.
4. (a) We show that f is discontinuous at 0 . Let $\varepsilon=\frac{1}{2}$. For any $\delta>0$ choose $n \in \mathbb{N}$ large enough so that

$$
x=\frac{1}{2 n \pi+\frac{\pi}{2}}<\delta
$$

and it follows that

$$
f(x)=\sin \left(2 n \pi+\frac{\pi}{2}\right)=1 \Longrightarrow|f(x)-f(0)|=1>\frac{1}{2}
$$

so no such δ in the definition of continuity exists. This means f is discontinuous at 0 .
(b) f is continuous away from 0 as a composition of continuous function, so f automatically has the intermediate value property if $0<a<b$ or $a<b<0$. It remains to verify the property when $a<0<b$. Let y be such that $f(a)<y<f(b)$. Let $\theta \in[-\pi / 2, \pi / 2]$ be the unique angle such that $\sin (\theta)=f(a)$. Choose $n \in \mathbb{N}$ large enough such that

$$
0<a^{\prime}=\frac{1}{2 n \pi+\theta}<b
$$

Thus we have found a point $a^{\prime} \in \mathbb{R}$ with $0<a^{\prime}<b$ and $f\left(a^{\prime}\right)=f(a)$. Intermediate value theorem now implies that there is $c \in\left(a^{\prime}, b\right) \subset(a, b)$ such that $f(c)=y$.
5. (a) When n is odd, $p_{A}(t)$ is an odd degree polynomial. This means that we can find $t_{1}<0$ such that $p_{A}\left(t_{1}\right)<0$ (since the leading term is odd-degree), and $t_{2}>0$ such that $p_{A}\left(t_{2}\right)>0$. Intermediate value theorem implies there is some $t_{0} \in\left(t_{1}, t_{2}\right)$ such that $p_{A}\left(t_{0}\right)=0$.
(b) When n is even we can find $t_{1}<0$ such that $p_{A}\left(t_{1}\right)>0$ and $t_{2}>0$ such that $p_{A}\left(t_{2}\right)>0$. Since $p_{A}(0)<0$, intermediate value theorem implies that we can find $t_{0} \in\left(t_{1}, 0\right)$ and $t_{0}^{\prime} \in\left(0, t_{2}\right)$ such that $p_{A}\left(t_{0}\right)=p_{A}\left(t_{0}^{\prime}\right)=0$.
6. (a) Consider $f(x)=\frac{1}{x}$ and $x_{n}=\frac{1}{n}$. Clearly $\left\{x_{n}\right\}_{n=1}^{\infty}$ is Cauchy, but $\left\{f\left(x_{n}\right)\right\}_{n=1}^{\infty}=\{n\}_{n=1}^{\infty}$ is clearly not Cauchy.
(b) By Theorem 2.4.5 in the notes, a sequence of real number is Cauchy if and only if it converges. Hence we may assume $x_{n} \rightarrow x \in \mathbb{R}$ as $n \rightarrow \infty$. Since g is continuous we have $g\left(x_{n}\right) \rightarrow g(x)$, so $\left\{g\left(x_{n}\right)\right\}_{n=1}^{\infty}$ is also Cauchy.
7. For $h>0$ we consider the difference quotient

$$
\left|\frac{f(h)-f(0)}{h-0}\right|=\frac{f(h)}{h}= \begin{cases}h & h \in \mathbb{Q} \\ 0 & h \notin \mathbb{Q}\end{cases}
$$

In both cases as $h \rightarrow 0$ we have

$$
\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h-0}=0
$$

so f is differentiable at $x=0$. To show that f is discontinuous everywhere else, we first consider $x \in \mathbb{Q}$. Then $f(x)=x^{2} \neq 0$. Let $\varepsilon=\frac{x^{2}}{2}$. For any $\delta>0$ choose $y \in(x-\delta, x+\delta) \backslash \mathbb{Q}$ (such y exists since \mathbb{Q} is countable). It follows that

$$
|f(x)-f(y)|=x^{2}>\frac{x^{2}}{2}
$$

so f is not continuous at x. If $x \in \mathbb{R} \backslash \mathbb{Q}$. Let $\varepsilon=\frac{x^{2}}{8}$, and given $\delta>0$ choose $y \in(x-\min \{\delta,|x| / 2\}, x+$ $\min \{\delta,|x| / 2\}) \cap \mathbb{Q}($ such y exists since \mathbb{Q} is dense in \mathbb{R}). It follows that

$$
|f(x)-f(y)|=y^{2}>\frac{x^{2}}{4}>\frac{x^{2}}{8}
$$

so f is not continuous at x either.
8. (a) Clearly f is differentiable away from 0 since the function is a product of differentiable function. At $x=0$, for $h>0$ we consider

$$
\left|\frac{f(h)-f(0)}{h-0}\right|=\left|\frac{h^{2} \sin (1 / h)}{h}\right|=|h \sin (1 / h)|
$$

Note that

$$
\lim _{h \rightarrow 0}|h \sin (1 / h)|=\lim _{x \rightarrow \infty} \frac{\sin (x)}{x}=0
$$

by squeeze theorem. So we have

$$
\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h-0}=0
$$

meaning f is differentiable at 0 with $f^{\prime}(0)=0$.
(b) By the chain rule we compute directly that away from 0

$$
f^{\prime}(x)=2 x \sin (1 / x)-\cos (1 / x)
$$

If $f^{\prime}(x)$ were continuous at $x=0$ we would have

$$
\lim _{x \rightarrow 0} 2 x \sin (1 / x)-\cos (1 / x)=f^{\prime}(0)=0
$$

but by Problem 4 we see that the limit $\cos (1 / x)$ as $x \rightarrow 0$ does not exist, so $f^{\prime}(x)$ is not continuous at 0 .

