
1. We will show that the max function M(x) is continuous. The case for min m(x) is similar. Let x ∈ S.
Suppose first that f(x) > g(x). Then by Problem 7 in PS5, there is δ > 0 such that |y − x| < δ implies
f(y)− g(y) > 0. Consequently if |y − x| < δ we have M(y) = f(y), and it follows that M is continuous
at x since f is continuous. Similarly we can deal with the case when g(x) > f(x).

Thus it remains to consider the case when f(x) = g(x) = L. Let ε > 0. Since f and g are both
continuous, there are δ1, δ2 respectively such that |y − x| < δ1 =⇒ |f(y)− L| < ε and |y − x| <
δ2 =⇒ |g(y)− L| < ε. Let δ = min{δ1, δ2}. It follows that if |y − x| < δ we have

|M(y)−M(x)| = |M(y)− L| =

{
|g(y)− L| g(y) > f(y)

|f(y)− L| g(y) ≤ f(y)
< ε

So M is continuous at x.

2. Consider g(x) = f(x)− x. Then g(0) = f(0) ≥ 0. If g(0) = 0 then f(0) = 0 and we are done since we
can take c = 0. So we may assume g(0) > 0. Moreover g(1) = f(1) − 1 ≤ 0. If g(1) = 0 then we are
also done since f(1) = 1, so we may assume g(1) < 0. But then intermediate value theorem implies
there is c ∈ (0, 1) such that g(c) = 0 =⇒ f(c) = c.

3. (a) Take for example f(x) = 1
2 for x ∈ [0, 1].

(b) Suppose for a contradiction that f is onto. Let xn ∈ [0, 1] be such that f(xn) = 1
n . By Bolzano-

Weierstrass we may extract a subsequence {xnk
}∞k=1 such that xnk

→ x ∈ [0, 1]. Since f is
continuous it follows that

0 = lim
k→∞

1

nk
= lim
k→∞

f(xnk
) = f(x)

which is a contradiction since 0 is not in the range of f .

4. (a) We show that f is discontinuous at 0. Let ε = 1
2 . For any δ > 0 choose n ∈ N large enough so

that

x =
1

2nπ + π
2

< δ

and it follows that

f(x) = sin(2nπ +
π

2
) = 1 =⇒ |f(x)− f(0)| = 1 >

1

2

so no such δ in the definition of continuity exists. This means f is discontinuous at 0.

(b) f is continuous away from 0 as a composition of continuous function, so f automatically has the
intermediate value property if 0 < a < b or a < b < 0. It remains to verify the property when
a < 0 < b. Let y be such that f(a) < y < f(b). Let θ ∈ [−π/2, π/2] be the unique angle such that
sin(θ) = f(a). Choose n ∈ N large enough such that

0 < a′ =
1

2nπ + θ
< b

Thus we have found a point a′ ∈ R with 0 < a′ < b and f(a′) = f(a). Intermediate value theorem
now implies that there is c ∈ (a′, b) ⊂ (a, b) such that f(c) = y.

5. (a) When n is odd, pA(t) is an odd degree polynomial. This means that we can find t1 < 0 such that
pA(t1) < 0 (since the leading term is odd-degree), and t2 > 0 such that pA(t2) > 0. Intermediate
value theorem implies there is some t0 ∈ (t1, t2) such that pA(t0) = 0.

(b) When n is even we can find t1 < 0 such that pA(t1) > 0 and t2 > 0 such that pA(t2) > 0. Since
pA(0) < 0, intermediate value theorem implies that we can find t0 ∈ (t1, 0) and t′0 ∈ (0, t2) such
that pA(t0) = pA(t′0) = 0.

6. (a) Consider f(x) = 1
x and xn = 1

n . Clearly {xn}∞n=1 is Cauchy, but {f(xn)}∞n=1 = {n}∞n=1 is clearly
not Cauchy.
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(b) By Theorem 2.4.5 in the notes, a sequence of real number is Cauchy if and only if it converges.
Hence we may assume xn → x ∈ R as n → ∞. Since g is continuous we have g(xn) → g(x), so
{g(xn)}∞n=1 is also Cauchy.

7. For h > 0 we consider the difference quotient∣∣∣∣f(h)− f(0)

h− 0

∣∣∣∣ =
f(h)

h
=

{
h h ∈ Q
0 h 6∈ Q

In both cases as h→ 0 we have

lim
h→0

f(h)− f(0)

h− 0
= 0

so f is differentiable at x = 0. To show that f is discontinuous everywhere else, we first consider x ∈ Q.

Then f(x) = x2 6= 0. Let ε = x2

2 . For any δ > 0 choose y ∈ (x− δ, x+ δ) \Q (such y exists since Q is
countable). It follows that

|f(x)− f(y)| = x2 >
x2

2

so f is not continuous at x. If x ∈ R\Q. Let ε = x2

8 , and given δ > 0 choose y ∈ (x−min{δ, |x| /2}, x+
min{δ, |x| /2}) ∩Q (such y exists since Q is dense in R). It follows that

|f(x)− f(y)| = y2 >
x2

4
>
x2

8

so f is not continuous at x either.

8. (a) Clearly f is differentiable away from 0 since the function is a product of differentiable function.
At x = 0, for h > 0 we consider∣∣∣∣f(h)− f(0)

h− 0

∣∣∣∣ =

∣∣∣∣h2 sin(1/h)

h

∣∣∣∣ = |h sin(1/h)|

Note that

lim
h→0
|h sin(1/h)| = lim

x→∞

sin(x)

x
= 0

by squeeze theorem. So we have

lim
h→0

f(h)− f(0)

h− 0
= 0

meaning f is differentiable at 0 with f ′(0) = 0.

(b) By the chain rule we compute directly that away from 0

f ′(x) = 2x sin(1/x)− cos(1/x)

If f ′(x) were continuous at x = 0 we would have

lim
x→0

2x sin(1/x)− cos(1/x) = f ′(0) = 0

but by Problem 4 we see that the limit cos(1/x) as x→ 0 does not exist, so f ′(x) is not continuous
at 0.
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