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We will show that the max function M (z) is continuous. The case for min m(z) is similar. Let x € S.
Suppose first that f(z) > g(z). Then by Problem 7 in PS5, there is § > 0 such that |y — 2| < § implies
f(y) —g(y) > 0. Consequently if |y — x| < § we have M (y) = f(y), and it follows that M is continuous
at x since f is continuous. Similarly we can deal with the case when g(z) > f(z).

Thus it remains to consider the case when f(z) = g(x) = L. Let € > 0. Since f and g are both
continuous, there are d;, do respectively such that |y —z| < 61 = |f(y)— L| < € and |y —z| <
d2 = |g(y) — L| < e. Let 6 = min{dy,d2}. It follows that if |y — x| < § we have
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So M is continuous at .

. Consider g(x) = f(x) —x. Then ¢g(0) = f(0) > 0. If g(0) = 0 then f(0) = 0 and we are done since we

can take ¢ = 0. So we may assume g(0) > 0. Moreover g(1) = f(1) —1 < 0. If g(1) = 0 then we are
also done since f(1) = 1, so we may assume ¢(1) < 0. But then intermediate value theorem implies
there is ¢ € (0,1) such that g(¢) =0 = f(c) =c.

(a) Take for example f(z) = 3 for z € [0, 1].

(b) Suppose for a contradiction that f is onto. Let x,, € [0,1] be such that f(z,) = . By Bolzano-
Weierstrass we may extract a subsequence {z,,}?°, such that z,, — x € [0,1]. Since f is

continuous it follows that

0= lim L lim f(zn,) = f(x)

k—00 N k—o0
which is a contradiction since 0 is not in the range of f.

(a) We show that f is discontinuous at 0. Let ¢ = % For any 6 > 0 choose n € N large enough so
that

1
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and it follows that

f(x) = sin(2nm + g) =1 = |f(z) - f(0)|=1> %

so no such 9§ in the definition of continuity exists. This means f is discontinuous at 0.

(b) f is continuous away from 0 as a composition of continuous function, so f automatically has the
intermediate value property if 0 < a < b or a < b < 0. It remains to verify the property when
a < 0 < b. Let y be such that f(a) <y < f(b). Let 6 € [—mw/2,7/2] be the unique angle such that
sin(d) = f(a). Choose n € N large enough such that

/

O0<ad = <b

2nm + 6

Thus we have found a point ¢’ € R with 0 < a’ < b and f(a’) = f(a). Intermediate value theorem
now implies that there is ¢ € (a/,b) C (a,b) such that f(c) = y.

(a) When n is odd, pa(t) is an odd degree polynomial. This means that we can find ¢; < 0 such that
pa(t1) < 0 (since the leading term is odd-degree), and ¢ > 0 such that p4(t2) > 0. Intermediate
value theorem implies there is some ty € (¢1,t2) such that pa(tg) = 0.

(b) When n is even we can find ¢; < 0 such that pa(t1) > 0 and ¢ > 0 such that p4(t2) > 0. Since
pa(0) < 0, intermediate value theorem implies that we can find ¢y € (¢1,0) and ¢, € (0,t3) such
that pa(to) = pa(ty) = 0.

(a) Consider f(z) =1 and z,, = 1. Clearly {,}52, is Cauchy, but {f(z,)}32; = {n}52, is clearly
not Cauchy.
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(b) By Theorem 2.4.5 in the notes, a sequence of real number is Cauchy if and only if it converges.
Hence we may assume z, — = € R as n — oco. Since ¢ is continuous we have g(z,) — g(x), so
{g(zn)}22, is also Cauchy.

For h > 0 we consider the difference quotient

‘f(h)—f(O)‘ Q) {h heQ
-0

h h 0 hgQ

In both cases as h — 0 we have

i L) = £(0)

h—0 h—0 =0

so f is differentiable at = 0. To show that f is discontinuous everywhere else, we first consider z € Q.
2

Then f(z) = 2? # 0. Let e = £-. For any 0 > 0 choose y € (z — d,2 4+ 6) \ Q (such y exists since Q is

countable). It follows that

@)~ W)l =a®> 5

so f is not continuous at z. If x € R\ Q. Let ¢ = %:, and given ¢ > 0 choose y € (z —min{d, |z| /2},x +
min{d, || /2}) N Q (such y exists since Q is dense in R). It follows that

x?2  x?

—_ > —
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so f is not continuous at x either.

(a) Clearly f is differentiable away from 0 since the function is a product of differentiable function.
At x =0, for h > 0 we consider

h2 sin(1/h)

f(h) = FO)| _ T
‘ 0 = Z = |hsin(1/h)|
Note that
. . . sin(z)
lim |hsin(1/h)] = lim ——= =0
h—0 T—00 x
by squeeze theorem. So we have
- f(h) = f(0) _
W h—o 0

meaning f is differentiable at 0 with f/(0) = 0.
(b) By the chain rule we compute directly that away from 0
f'(x) = 2xsin(1/x) — cos(1/x)
If f'(x) were continuous at 2 = 0 we would have

lim 2z sin(1/x) — cos(1/x) = f(0) =0

z—0

but by Problem 4 we see that the limit cos(1/xz) as  — 0 does not exist, so f’(x) is not continuous
at 0.



