
1. Since the series is absolutely convergent, the right hand side is finite. Moreover, by the triangle in-
equality, the partial sums satisfy ∣∣∣∣∣
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Taking N →∞ and noticing that
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(since the limit of the right hand side exists) gives the inequality.

2. (a) Let ε > 0. Since an → A there is N ∈ N such that n > N implies

|an −A| < ε/2

Since an is convergent there is M > 0 such that |an| ≤M for all n. Now given n > N we have by
triangle inequality

|bn −A| ≤
n∑

k=1

1

n
|an −A| ≤

N∑
k=1

1

n
|an −A|+

n∑
k=N

1

n
|an −A| ≤

N∑
k=1

2M

n
+

n∑
k=N

ε

2n
<

2MN

n
+
ε

2

Now let N1 be such that

2MN

N1
< ε/2

It follows that for n > max{N,N1} we have

|bn −A| <
ε

2
+
ε

2
= ε

which means bn → A as well.

(b) This follows immediately by taking an = sn in part (a).

(c) The partial sums are sk = 0 if k is even and −1 if k is odd. So we have

n∑
k=1

sk =

{
−n

2 n even

−n+1
2 n odd

and it follows that

1

n
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{
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2 n even

− 1
2 −

1
2n n odd

In either case the limit is − 1
2 as n→∞, so the series is Cesàro summable with S = − 1

2

3. By definition (c− ε, c+ ε) \ {c} ∩A is not empty for every ε > 0, but clearly (c− ε, c+ ε) \ {c} ∩A ⊂
(c− ε, c+ ε) \ {c} ∩ S, so the latter set is also not empty for any ε > 0.

4. Let ε > 0 by definition there is δ1 > 0 such that |c− c2| < δ1 =⇒ |g(c)− g(c2)| < ε. By definition
again there is δ2 > 0 such that |c− c1| < δ2 =⇒ |f(c)− c2| < δ1. Let δ = δ2 and for |c− c1| < δ we
have

|g(f(c))− L| = |g(f(c))− g(c2)| < ε

since |f(c)− c2| < δ1.

5. Since c is a cluster point of S, there is xn ∈ (c − 1/n, c + 1/n) \ {c} for every n ∈ N. Clearly xn → c.
Since f is bounded, by Bolzano-Weierstrass we may extract a subsequence {xni

} ⊂ {xn} such that
{f(xni

)} converges. Since xn → c it follows xni
→ c as well, so the sequnce {xni

} is what we wanted.
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6. Let x0 ∈ (0,∞) and ε > 0. We have ∣∣∣∣ 1x − 1

x0

∣∣∣∣ =
|x− x0|
xx0

Let us first agree that |x− x0| < 1
2 |x0|, so that x > x0

2 and

|x− x0|
xx0

<
2 |x− x0|

x20

If further |x− x0| < εx2
0

2 we will have

2 |x− x0|
x20

< ε

Thus it suffices to pick δ = min{ 12 |x0| ,
ε|x0|2

2 } (so that both of the above inequalities hold).

7. By definition there is δ > 0 such that |x− c| < δ implies

|f(x)− f(c)| < |f(c)|
2

which in turn (by triangle inequality) implies f(x) > f(c)− f(c)
2 = f(c)

2 > 0 for |x− c| < δ.

8. Let ε > 0 and fix x ∈ R. Let δ = ε
L , then we have |x− y| < δ implies

|f(x)− f(y)| ≤ L |x− y| < L
ε

L
= ε

which shows the continuity at x. Since x is arbitrary, f is continuous.
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