1. Since the series is absolutely convergent, the right hand side is finite. Moreover, by the triangle inequality, the partial sums satisfy

$$
\left|\sum_{n=1}^{N} x_{n}\right| \leq \sum_{n=1}^{N}\left|x_{n}\right|
$$

Taking $N \rightarrow \infty$ and noticing that

$$
\lim _{N \rightarrow \infty}\left|\sum_{n=1}^{N} x_{n}\right|=\left|\lim _{N \rightarrow \infty} \sum_{n=1}^{N} x_{n}\right|
$$

(since the limit of the right hand side exists) gives the inequality.
2. (a) Let $\varepsilon>0$. Since $a_{n} \rightarrow A$ there is $N \in \mathbb{N}$ such that $n>N$ implies

$$
\left|a_{n}-A\right|<\varepsilon / 2
$$

Since a_{n} is convergent there is $M>0$ such that $\left|a_{n}\right| \leq M$ for all n. Now given $n>N$ we have by triangle inequality

$$
\left|b_{n}-A\right| \leq \sum_{k=1}^{n} \frac{1}{n}\left|a_{n}-A\right| \leq \sum_{k=1}^{N} \frac{1}{n}\left|a_{n}-A\right|+\sum_{k=N}^{n} \frac{1}{n}\left|a_{n}-A\right| \leq \sum_{k=1}^{N} \frac{2 M}{n}+\sum_{k=N}^{n} \frac{\varepsilon}{2 n}<\frac{2 M N}{n}+\frac{\varepsilon}{2}
$$

Now let N_{1} be such that

$$
\frac{2 M N}{N_{1}}<\varepsilon / 2
$$

It follows that for $n>\max \left\{N, N_{1}\right\}$ we have

$$
\left|b_{n}-A\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

which means $b_{n} \rightarrow A$ as well.
(b) This follows immediately by taking $a_{n}=s_{n}$ in part (a).
(c) The partial sums are $s_{k}=0$ if k is even and -1 if k is odd. So we have

$$
\sum_{k=1}^{n} s_{k}= \begin{cases}-\frac{n}{2} & n \text { even } \\ -\frac{n+1}{2} & n \text { odd }\end{cases}
$$

and it follows that

$$
\frac{1}{n} \sum_{k=1}^{n} s_{k}= \begin{cases}-\frac{1}{2} & n \text { even } \\ -\frac{1}{2}-\frac{1}{2 n} & n \text { odd }\end{cases}
$$

In either case the limit is $-\frac{1}{2}$ as $n \rightarrow \infty$, so the series is Cesàro summable with $S=-\frac{1}{2}$
3. By definition $(c-\varepsilon, c+\varepsilon) \backslash\{c\} \cap A$ is not empty for every $\varepsilon>0$, but clearly $(c-\varepsilon, c+\varepsilon) \backslash\{c\} \cap A \subset$ $(c-\varepsilon, c+\varepsilon) \backslash\{c\} \cap S$, so the latter set is also not empty for any $\varepsilon>0$.
4. Let $\varepsilon>0$ by definition there is $\delta_{1}>0$ such that $\left|c-c_{2}\right|<\delta_{1} \Longrightarrow\left|g(c)-g\left(c_{2}\right)\right|<\varepsilon$. By definition again there is $\delta_{2}>0$ such that $\left|c-c_{1}\right|<\delta_{2} \Longrightarrow\left|f(c)-c_{2}\right|<\delta_{1}$. Let $\delta=\delta_{2}$ and for $\left|c-c_{1}\right|<\delta$ we have

$$
|g(f(c))-L|=\left|g(f(c))-g\left(c_{2}\right)\right|<\varepsilon
$$

since $\left|f(c)-c_{2}\right|<\delta_{1}$.
5. Since c is a cluster point of S, there is $x_{n} \in(c-1 / n, c+1 / n) \backslash\{c\}$ for every $n \in \mathbb{N}$. Clearly $x_{n} \rightarrow c$. Since f is bounded, by Bolzano-Weierstrass we may extract a subsequence $\left\{x_{n_{i}}\right\} \subset\left\{x_{n}\right\}$ such that $\left\{f\left(x_{n_{i}}\right)\right\}$ converges. Since $x_{n} \rightarrow c$ it follows $x_{n_{i}} \rightarrow c$ as well, so the sequance $\left\{x_{n_{i}}\right\}$ is what we wanted.
6. Let $x_{0} \in(0, \infty)$ and $\epsilon>0$. We have

$$
\left|\frac{1}{x}-\frac{1}{x_{0}}\right|=\frac{\left|x-x_{0}\right|}{x x_{0}}
$$

Let us first agree that $\left|x-x_{0}\right|<\frac{1}{2}\left|x_{0}\right|$, so that $x>\frac{x_{0}}{2}$ and

$$
\frac{\left|x-x_{0}\right|}{x x_{0}}<\frac{2\left|x-x_{0}\right|}{x_{0}^{2}}
$$

If further $\left|x-x_{0}\right|<\frac{\varepsilon x_{0}^{2}}{2}$ we will have

$$
\frac{2\left|x-x_{0}\right|}{x_{0}^{2}}<\varepsilon
$$

Thus it suffices to pick $\delta=\min \left\{\frac{1}{2}\left|x_{0}\right|, \frac{\varepsilon\left|x_{0}\right|^{2}}{2}\right\}$ (so that both of the above inequalities hold).
7. By definition there is $\delta>0$ such that $|x-c|<\delta$ implies

$$
|f(x)-f(c)|<\frac{|f(c)|}{2}
$$

which in turn (by triangle inequality) implies $f(x)>f(c)-\frac{f(c)}{2}=\frac{f(c)}{2}>0$ for $|x-c|<\delta$.
8. Let $\varepsilon>0$ and fix $x \in \mathbb{R}$. Let $\delta=\frac{\varepsilon}{L}$, then we have $|x-y|<\delta$ implies

$$
|f(x)-f(y)| \leq L|x-y|<L \frac{\varepsilon}{L}=\varepsilon
$$

which shows the continuity at x. Since x is arbitrary, f is continuous.

