1. (a) Let I = [a, b]. Suppose for a contradiction that $x = \lim_{n \to \infty} x_n \notin I$. Without loss of generality we may assume x > b. Let $\varepsilon = x - b$. By definition of the limit there is $N \in \mathbb{N}$ such that n > N implies $|x_n - x| < \varepsilon$, but this implies

$$x_n \in (x - \varepsilon, x + \varepsilon) = (b, x + \varepsilon)$$

which is disjoint from I, a contradiction.

- (b) Consider $\left\{\frac{1}{n+1}\right\}_{n=1}^{\infty} \subset (0,1)$, the limit is 0 as $n \to \infty$ which is not in (0,1).
- 2. Let $x = \lim_{n \to \infty} x_n$, we must show that $\lim_{n \to \infty} x_n^k = x^k$. Given $\varepsilon > 0$, choose $N_1 \in \mathbb{N}$ such that $n > N_1$ implies

$$|x_n - x| < \frac{\varepsilon}{k(|x| + 1)^{k-1}}$$

Since convergent sequences are bounded, we may choose $N_2 \in \mathbb{N}$ such that $n > N_2$ implies $|x_n| \le |x|+1$. Let $N = \max\{N_1, N_2\}$. For n > N we have

$$\begin{aligned} \left| x_n^k - x^k \right| &= |x_n - x| \left| x_n^{k-1} + x x_n^{k-2} + x^2 x_n^{k-3} + \dots + x^{k-1} \right| \\ &\leq |x_n - x| \left(\left| x_n \right|^{k-1} + |x| \left| x_n \right|^{k-2} + \dots + |x|^{k-1} \right) \\ &\leq \frac{\varepsilon}{k(|x|+1)^k} \left((|x|+1)^{k-1} + |x| \left(|x|+1 \right)^{k-2} + \dots + |x|^{k-1} \right) \right) \\ &< \frac{\varepsilon}{k(|x|+1)^k} (k(|x|+1)^k) < \varepsilon \end{aligned}$$

which gives the required result by definition.

3. (a) Let $M \in \mathbb{R}$ be such that $|a_n| \leq M$. Given $\varepsilon > 0$, choose $N \in \mathbb{N}$ such that $n \geq N$ implies

$$|b_n| < \frac{\varepsilon}{M}$$

Then for $n \ge N$ we have

$$|a_n b_n| \le |a_n| \, |b_n| < M \frac{\varepsilon}{M} < \varepsilon$$

so $\lim_{n\to\infty} a_n b_n = 0$.

- (b) Consider $a_n = n^2$ and $b_n = \frac{1}{n}$, then $a_n b_n = n \to \infty$ as $n \to \infty$.
- (c) Let $a_n = 1$ if n is even and -1 if n is odd. Let $b_n = 1$. Then $a_n b_n = a_n$ which is divergent.
- 4. Let $\varepsilon > 0$. By definition, there is $N_1 \in \mathbb{N}$ such that $n > N_1$ implies $|x_{2n} x| < \varepsilon$. Similarly there is N_2 such that $n > N_2$ implies $|x_{2n-1} x| < \varepsilon$. Let $N = \max\{2N_1, 2N_2\}$ and clearly n > N implies $|x_n n| < \varepsilon$ (since *n* is either even or odd). So $\lim_{n \to \infty} x_n = x$ as well.
- 5. (a) $x_1 = 1$ is obvious. By recursive definition we have

$$x_{n+1} = \frac{f_{n+2}}{f_{n+1}} = \frac{f_{n+1} + f_n}{f_{n+1}} = 1 + \left(\frac{f_{n+1}}{f_n}\right)^{-1} = 1 + x_n^{-1}$$

(b) There are 5 things to show: $x_1 \ge 1$, $x_2 \le 2$, $x_{2i-1} \le x_{2i+1}$ for all $i \in \mathbb{N}$, $x_{2i} \le x_{2i-2}$ for all $i \in \mathbb{N}$ and $x_{2i+1} \le x_{2i}$ for all $i \in \mathbb{N}$. The first two are obvious. To show the third item we have by the recursive relation

$$x_{2i+1} = 1 + x_{2i}^{-1} = 1 + (1 + x_{2i-1}^{-1})^{-1}$$

so that

$$x_{2i-1} \le x_{2i+1} \iff x_{2i-1}(x_{2i-1}+1) \le x_{2i-1}+1 + x_{2i-1} \iff x_{2i-1}^2 \le 1 + x_{2i-1}$$

which is true for $\frac{1-\sqrt{5}}{2} \le x_{2i-1} \le \frac{1+\sqrt{5}}{2}$.

Note that $x_1 = 1$ is between 0 and $\frac{1+\sqrt{5}}{2}$, so $x_1 \leq x_3$. More generally one can show that this relation is preserved under the recursive relation. Indeed

$$0 \le x_{2i-1} \le \frac{1+\sqrt{5}}{2} \implies x_{2i} = 1 + x_{2i-1}^{-1} \ge 1 + \frac{2}{1+\sqrt{5}} = \frac{1+\sqrt{5}}{2}$$
$$\implies x_{2i+1} = 1 + (1+x_{2i-1}^{-1})^{-1} \le 1 + \frac{2}{1+\sqrt{5}} = \frac{1+\sqrt{5}}{2}$$

This means $0 \le x_{2i-1} \le \frac{1+\sqrt{5}}{2}$ for all *i* and it follows from the previous paragraph that $x_{2i-1} \le x_{2i+1}$.

The fourth item follows in a similar fashion: one shows that $x_{2i} \ge \frac{1+\sqrt{5}}{2}$ is preserved under the recursive relation and that

$$x_{2i-2} \ge x_{2i} \iff x_{2i-2} \ge 1 + x_{2i-2}^{-1} \iff x \ge \frac{1+\sqrt{5}}{2} \text{ or } x \le \frac{1-\sqrt{5}}{2}$$

Finally the fifth item follows from the above since

$$x_{2i-1} \le \frac{1+\sqrt{5}}{2} \le x_{2i}$$

Combining all these gives the desired inequalities.

(c) We use Problem 4. By the recurrence relation we have that the odd-numbered terms satisfy

$$x_{2i+1} = 1 + x_{2i}^{-1} = 1 + (1 + x_{2i-1}^{-1})^{-1}$$

Now by part b) the odd-numbered term is a monotonically increasing sequence bounded above by 2. So by the monotone convergence theorem the limit exists, and one can directly solve the above equation to get

$$\lim_{n \to \infty} x_{2n-1} = \frac{1 + \sqrt{5}}{2}$$

since by the previous part $x_{2n+1} \ge 1$ for all *n*. Similarly the even-numbered terms also have a limit, and a similar computation shows that this limit is also $\frac{1+\sqrt{5}}{2}$, so Problem 4 implies that

$$\lim_{n \to \infty} x_n = \frac{1 + \sqrt{5}}{2}$$

6. Recall that

$$\limsup_{n \to \infty} = \lim_{n \to \infty} \sup_{k > n} x_k$$

Moreover we have

$$\sup_{k>n} x_k = -\inf_{k>n} (-x_k)$$

Combining these and noticing that the negative sign can be pulled out of the limit since the limit exists gives the result.

- 7. (a) This is an easy consequence of the triangle inequality.
 - (b) Recall that we have proved that (for example, Problem 8 in PS2, with the domain of f being $\mathbb{N} \setminus \mathbb{N}_n$)

$$\sup_{k>n}(x_k+y_k) \le \sup_{k>n}x_k + \sup_{k>n}y_k$$

for every $n \in \mathbb{N}$. Taking limit as $n \to \infty$ both sides shows the desired result.

(c) Let x_n be 1 when n is even and -1 when n is odd, and y_n be 1 when n is odd and -1 when n is even. Clearly $x_n + y_n$ is identically 0 so $\limsup (x_n + y_n) = 0$. On the other hand it is clear that $\limsup x_n = \limsup y_n = 1$, so in this case

$$\limsup_{n \to \infty} (x_n + y_n) < \limsup_{n \to \infty} x_n + \limsup_{n \to \infty} y_n$$