
1. (a) Let I = [a, b]. Suppose for a contradiction that x = limn→∞ xn 6∈ I. Without loss of generality
we may assume x > b. Let ε = x− b. By definition of the limit there is N ∈ N such that n > N
implies |xn − x| < ε, but this implies

xn ∈ (x− ε, x + ε) = (b, x + ε)

which is disjoint from I, a contradiction.

(b) Consider
{

1
n+1

}∞
n=1
⊂ (0, 1), the limit is 0 as n→∞ which is not in (0, 1).

2. Let x = limn→∞ xn, we must show that limn→∞ xk
n = xk. Given ε > 0, choose N1 ∈ N such that

n > N1 implies

|xn − x| < ε

k(|x|+ 1)k−1

Since convergent sequences are bounded, we may choose N2 ∈ N such that n > N2 implies |xn| ≤ |x|+1.
Let N = max{N1, N2}. For n > N we have∣∣xk

n − xk
∣∣ = |xn − x|

∣∣xk−1
n + xxk−2

n + x2xk−3
n + · · ·+ xk−1∣∣

≤ |xn − x|
(
|xn|k−1 + |x| |xn|k−2 + · · ·+ |x|k−1

)
≤ ε

k(|x|+ 1)k

(
(|x|+ 1)k−1 + |x| (|x|+ 1)k−2 + · · ·+ |x|k−1)

)
<

ε

k(|x|+ 1)k
(k(|x|+ 1)k) < ε

which gives the required result by definition.

3. (a) Let M ∈ R be such that |an| ≤M . Given ε > 0, choose N ∈ N such that n ≥ N implies

|bn| <
ε

M

Then for n ≥ N we have

|anbn| ≤ |an| |bn| < M
ε

M
< ε

so limn→∞ anbn = 0.

(b) Consider an = n2 and bn = 1
n , then anbn = n→∞ as n→∞.

(c) Let an = 1 if n is even and −1 if n is odd. Let bn = 1. Then anbn = an which is divergent.

4. Let ε > 0. By definition, there is N1 ∈ N such that n > N1 implies |x2n − x| < ε. Similarly there is
N2 such that n > N2 implies |x2n−1 − x| < ε. Let N = max{2N1, 2N2} and clearly n > N implies
|xn − n| < ε (since n is either even or odd). So limn→∞ xn = x as well.

5. (a) x1 = 1 is obvious. By recursive definition we have

xn+1 =
fn+2

fn+1
=

fn+1 + fn
fn+1

= 1 +

(
fn+1

fn

)−1
= 1 + x−1n

(b) There are 5 things to show: x1 ≥ 1, x2 ≤ 2, x2i−1 ≤ x2i+1 for all i ∈ N, x2i ≤ x2i−2 for all i ∈ N
and x2i+1 ≤ x2i for all i ∈ N. The first two are obvious. To show the third item we have by the
recursive relation

x2i+1 = 1 + x−12i = 1 + (1 + x−12i−1)−1

so that

x2i−1 ≤ x2i+1 ⇐⇒ x2i−1(x2i−1 + 1) ≤ x2i−1 + 1 + x2i−1 ⇐⇒ x2
2i−1 ≤ 1 + x2i−1
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which is true for 1−
√
5

2 ≤ x2i−1 ≤ 1+
√
5

2 .

Note that x1 = 1 is between 0 and 1+
√
5

2 , so x1 ≤ x3. More generally one can show that this
relation is preserved under the recursive relation. Indeed

0 ≤ x2i−1 ≤
1 +
√

5

2
=⇒ x2i = 1 + x−12i−1 ≥ 1 +

2

1 +
√

5
=

1 +
√

5

2

=⇒ x2i+1 = 1 + (1 + x−12i−1)−1 ≤ 1 +
2

1 +
√

5
=

1 +
√

5

2

This means 0 ≤ x2i−1 ≤ 1+
√
5

2 for all i and it follows from the previous paragraph that x2i−1 ≤
x2i+1.

The fourth item follows in a similar fashion: one shows that x2i ≥ 1+
√
5

2 is preserved under the
recursive relation and that

x2i−2 ≥ x2i ⇐⇒ x2i−2 ≥ 1 + x−12i−2 ⇐⇒ x ≥ 1 +
√

5

2
or x ≤ 1−

√
5

2

Finally the fifth item follows from the above since

x2i−1 ≤
1 +
√

5

2
≤ x2i

Combining all these gives the desired inequalities.

(c) We use Problem 4. By the recurrence relation we have that the odd-numbered terms satisfy

x2i+1 = 1 + x−12i = 1 + (1 + x−12i−1)−1

Now by part b) the odd-numbered term is a monotonically increasing sequence bounded above by
2. So by the monotone convergence theorem the limit exists, and one can directly solve the above
equation to get

lim
n→∞

x2n−1 =
1 +
√

5

2

since by the previous part x2n+1 ≥ 1 for all n. Similarly the even-numbered terms also have a

limit, and a similar computation shows that this limit is also 1+
√
5

2 , so Problem 4 implies that

lim
n→∞

xn =
1 +
√

5

2

6. Recall that

lim sup
n→∞

= lim
n→∞

sup
k>n

xk

Moreover we have

sup
k>n

xk = − inf
k>n

(−xk)

Combining these and noticing that the negative sign can be pulled out of the limit since the limit exists
gives the result.

7. (a) This is an easy consequence of the triangle inequality.

(b) Recall that we have proved that (for example, Problem 8 in PS2, with the domain of f being
N \ Nn)

sup
k>n

(xk + yk) ≤ sup
k>n

xk + sup
k>n

yk

for every n ∈ N. Taking limit as n→∞ both sides shows the desired result.

(c) Let xn be 1 when n is even and −1 when n is odd, and yn be 1 when n is odd and −1 when n is
even. Clearly xn + yn is identically 0 so lim sup(xn + yn) = 0. On the other hand it is clear that
lim supxn = lim sup yn = 1, so in this case

lim sup
n→∞

(xn + yn) < lim sup
n→∞

xn + lim sup
n→∞

yn
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