- 1. (a) $[a,b] = \bigcap_{n=1}^{\infty} (a-1/n, b+1/n).$
 - (b) Let N be large enough so that $b a > \frac{2}{N}$ (so that we do not get empty set in the union, but it is also fine if you include many empty sets). Then $(a,b) = \bigcup_{n=N}^{\infty} [a + 1/n, b 1/n]$.
- 2. (a) Let $x \in U$, then by definition there is some λ such that $x \in U_{\lambda}$. Since U_{λ} is open we have an open interval I_x such that $x \in I_x \subset U_{\lambda} \subset U$, so U is open.
 - (b) Let $x \in U$, then $x \in U_i$ for each i = 1, ..., n. By definition there are open intervals $I_1, ..., I_n$ such that $x \in I_i \subset U_i$. Without loss of generality, and after possibly shrinking I_i , we can assume $I_i = (x a_i, x + a_i)$ for $a_i \in \mathbb{R}$. Now choose a real number $a < \min\{a_1, ..., a_n\}$, it follows that $(x a, x + a) \subset I_i \subset U_i$ for each i = 1, ..., n, and hence $(x a, x + a) \subset \bigcap_{i=1}^n U_i = U$, so U is open.
 - (c) The example is the same as Problem 1 (a). We will show that the closed interval (as the name suggests) [a, b] is not open. In fact, any open interval around b will not be fully contained in [a, b]. Indeed, any interval around b contains an interval of the form $(b - \varepsilon, b + \varepsilon)$ for some $\varepsilon > 0$, and it is clear that $b + \varepsilon/2 \notin [a, b]$.
- 3. Since \mathbb{Q} is dense in \mathbb{R} , given any $x \in U$ and an interval $(x a, x + a) \subset U$, $\mathbb{Q} \cap (x a, x + a)$ is not empty, so there is at least some rational number in it.
- 4. (a) We claim that the limit is 1. Indeed, given $\varepsilon > 0$, let N > 0 be such that $\frac{1}{N} < \varepsilon$, then for all n > N we have

$$\left|\frac{n}{n+1}-1\right|=\frac{1}{n+1}<\frac{1}{N}<\varepsilon$$

So the limit is 1 by definition.

(b) We claim that the limit does not exist. Suppose for a contradiction that $L \in \mathbb{R}$ is the limit of the sequence. We must exhibit an ε such that there is no $N \in \mathbb{N}$ such that

$$\left|\frac{(-2)^n}{n^2} - L\right| < \varepsilon$$

for all n > N. We will show this using $\varepsilon = 1$. Let n be even and by triangle in equality we have

$$\left|\frac{(-2)^n}{n^2} - L\right| \geq \frac{2^n}{n^2} - L$$

Now since 2^n grows much faster than n^2 , given any $N \in \mathbb{N}$, we can choose an even number n > N large so that

$$\frac{2^n}{n^2} > L + 2$$

and it follows

$$\left|\frac{(-2)^n}{n^2} - L\right| > L + 2 - L > 2 > 1$$

a contradiction, so the limit must not be equal to L for any $L \in \mathbb{R}$. Hence the limit must not exist.

5. Without loss of generality we may suppose $\{x_n\}$ is nondecreasing (otherwise consider $\{-x_n\}$). Suppose for a contradiction that there is some N > k such that $x_N > x_k$ (since the sequence is nondecreasing $x_N \ge x_k$). Let $\varepsilon = x_N - x_k$, it follows from monotonicity that

$$|x_n - x_k| = x_n - x_k \ge x_N - x_k > \epsilon$$

for every $n \geq N$, so x_k clearly cannot be the limit of the sequence, a contradiction.

6. (a) Let $I_n = [a_n, b_n]$. The nested condition ensures that $\{a_n\}$ is a monotone nondecreasing sequence. Note also that $\{a_n\}$ is bounded above by b_1 , so by the monotone convergence theorem we have $a_n \to a$ for some $a \in \mathbb{R}$. We claim that $a \in \bigcap_{n=1}^{\infty} I_n$. Note that it suffices to show that $a \leq b_n$ for every n.

Suppose for a contradiction that $a > b_{n_0}$ for some n_0 . Let $\varepsilon = a - b_{n_0}$. Since $a_n \to a$, there is $N \in \mathbb{N}$ such that n > N implies $a - a_n < \varepsilon = a - b_{n_0}$. On the other hand, since the intervals are nested we have $a - b_{n_0} < a - b_n$ for every $n > n_0$. Thus choosing $n > \max\{N, n_0\}$ we have

$$a - a_n < \varepsilon = a - b_{n_0} < a - b_n \implies b_n < a_n$$

a contradiction, since the intervals are assumed to be nonempty. This proves $a \leq b_n$ for every n and so $a \in I_n$ for every n, which in turn implies $a \in \bigcap_{n=1}^{\infty} I_n$.

(b) Consider $J_n = (0, 1/n)$, then $\bigcap_{n=1}^{\infty} J_n = \emptyset$.