
1. All numbers in this problem refer to the notes. We will first show that 0 ·x = 0 for any x in an ordered
field. To see this, by (D) and (A4) of Definition 1.1.5 we have

0 · x + 0 · x = (0 + 0)x = 0 · x

Using (ii) of Definition 1.1.1 we have

0 · x + 0 · x + 0 · (−x) = 0 · x + 0 · (−x)

Using (D), (A4), (A5) we have

0 · x + 0 · (x + (−x)) = 0 · (x + (−x)) ⇐⇒ 0 · x = 0

Now back to the original problem. Since x < 0 we have (−x) + x < 0 + (−x) by (ii), so 0 < −x by
(A4) and (A5). Since y < z we have y + (−y) < z + (−y) by (ii) and so 0 < z + (−y) by (A5). By (ii)
of Definition 1.1.7 we then have (−x)(z + (−y)) > 0. Using (D) and (ii) of Definition 1.1.1 we have

(−x)z + (−x)(−y) > 0 =⇒ (−x)z + (−x)(−y) + x(−y) > (−x)(−y) + x(−y)

Using (D), (A5) and 0 · x = 0 we have

(−x)z + ((−x) + x)(−y) > x(−y) =⇒ (−x)z + 0 · (−y) > x(−y) =⇒ (−x)z > x(−y)

Two applications of (ii) of Definition 1.1.1 gives

(−x)z + xz + xy > (−x)y + xz + xy

Using (A2) and (D) we have

((−x) + x)z + xy > ((−x) + x)y + xz

Finally using (A5) and 0 · x = 0 we get

0 · z + xy > 0 · y + xy =⇒ xy > xz

which is what we want to prove.

2. By definition of the supremum, we can find a1 ∈ A such that s > a1 > s − 1. Since a1 6= s, there is
a2 ∈ A such that s > a2 > a1. More generally, having defined a1, . . . , an, we let an+1 ∈ A be such that
s > an+1 > an. This gives a surjective map from N to {a1, a2, . . .} ⊂ A, so A contains a countably
infinite subset.

3. If E is empty then everything is vacously true, so suppose E 6= ∅. Every set E ⊂ S is bounded below
by 1 and above by ∞. If ∞ 6∈ E, then E has an infimum is well-defined by well-ordering principle. E
has a supremum if E is finite, and if E is infinite the supremum is ∞. If ∞ ∈ E, then the infimum is
again guaranteed by well-ordering principle, and the supremum is just ∞.

4. Since x2 ≥ 0 we have x2 ≤ x2 + y2 = 0 =⇒ x2 = 0 =⇒ x = 0. Similarly y = 0.

5. When n = 1 we have (1 + x)n = 1 + x so the inequality holds (and is actually a equality). Suppose the
claim is true for n, then

(1 + x)n+1 = (1 + x)n(1 + x) ≥ (1 + nx)(1 + x) = 1 + nx + x + nx2 = 1 + (n + 1)x + nx2 > 1 + (n + 1)x

so the claim holds true for n + 1 as well.

6. In class we showed that there is a unique positive number r ∈ R such that r2 = 5 and r = sup{x ∈
R | x2 < 5}. Note that Q has the property that given two rational numbers p < q there is a rational
number s with p < s < q, so the same proof also shows that r′ = {supx ∈ Q | x2 < 5} satisfies (r′)2 = 5
(Q does not have the least upper bound property, so we must consider the set {x ∈ Q | x2 < 5} as a
subset of R in order to obtain the number r′, which is not in Q). Since r is the unique positive real
number satisfying r2 = 5, we conclude r = r′, which means the suprema are equal.
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7. If x ≥ y, then max{x, y} = x and

1

2
(x + y + |x− y|) =

1

2
(x + y + x− y) =

1

2
(2x) = x

Similarly if y ≥ x then max{x, y} = y and

1

2
(x + y + |x− y|) =

1

2
(x + y + y − x) =

1

2
(2y) = y

The second statement is proven similarly.

8. Given ε > 0, by definition there is x1 ∈ D such that f(x0) + g(x0) > supx∈D(f(x) + g(x))− ε. Then

sup
x∈D

(f(x) + g(x)) < f(x0) + g(x0) + ε ≤ sup
x∈D

f(x) + sup
x∈D

g(x0) + ε

Since this is true for any ε we see that

sup
x∈D

(f(x) + g(x)) ≤ sup
x∈D

f(x) + sup
x∈D

g(x0)

Let D = {1,−1}, f(1) = 1, f(−1) = −1 and g(1) = −1, g(−1) = 1, then f + g is identically 0, so

0 = sup
x∈D

(f(x) + g(x)) ≤ sup
x∈D

f(x) + sup
x∈D

g(x0) = 1 + 1 = 2
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