1. All numbers in this problem refer to the notes. We will first show that $0 \cdot x=0$ for any x in an ordered field. To see this, by (D) and (A4) of Definition 1.1.5 we have

$$
0 \cdot x+0 \cdot x=(0+0) x=0 \cdot x
$$

Using (ii) of Definition 1.1.1 we have

$$
0 \cdot x+0 \cdot x+0 \cdot(-x)=0 \cdot x+0 \cdot(-x)
$$

Using (D), (A4), (A5) we have

$$
0 \cdot x+0 \cdot(x+(-x))=0 \cdot(x+(-x)) \Longleftrightarrow 0 \cdot x=0
$$

Now back to the original problem. Since $x<0$ we have $(-x)+x<0+(-x)$ by (ii), so $0<-x$ by (A4) and (A5). Since $y<z$ we have $y+(-y)<z+(-y)$ by (ii) and so $0<z+(-y)$ by (A5). By (ii) of Definition 1.1.7 we then have $(-x)(z+(-y))>0$. Using (D) and (ii) of Definition 1.1.1 we have

$$
(-x) z+(-x)(-y)>0 \Longrightarrow(-x) z+(-x)(-y)+x(-y)>(-x)(-y)+x(-y)
$$

Using (D), (A5) and $0 \cdot x=0$ we have

$$
(-x) z+((-x)+x)(-y)>x(-y) \Longrightarrow(-x) z+0 \cdot(-y)>x(-y) \Longrightarrow(-x) z>x(-y)
$$

Two applications of (ii) of Definition 1.1.1 gives

$$
(-x) z+x z+x y>(-x) y+x z+x y
$$

Using (A2) and (D) we have

$$
((-x)+x) z+x y>((-x)+x) y+x z
$$

Finally using (A5) and $0 \cdot x=0$ we get

$$
0 \cdot z+x y>0 \cdot y+x y \Longrightarrow x y>x z
$$

which is what we want to prove.
2. By definition of the supremum, we can find $a_{1} \in A$ such that $s>a_{1}>s-1$. Since $a_{1} \neq s$, there is $a_{2} \in A$ such that $s>a_{2}>a_{1}$. More generally, having defined a_{1}, \ldots, a_{n}, we let $a_{n+1} \in A$ be such that $s>a_{n+1}>a_{n}$. This gives a surjective map from \mathbb{N} to $\left\{a_{1}, a_{2}, \ldots\right\} \subset A$, so A contains a countably infinite subset.
3. If E is empty then everything is vacously true, so suppose $E \neq \emptyset$. Every set $E \subset S$ is bounded below by 1 and above by ∞. If $\infty \notin E$, then E has an infimum is well-defined by well-ordering principle. E has a supremum if E is finite, and if E is infinite the supremum is ∞. If $\infty \in E$, then the infimum is again guaranteed by well-ordering principle, and the supremum is just ∞.
4. Since $x^{2} \geq 0$ we have $x^{2} \leq x^{2}+y^{2}=0 \Longrightarrow x^{2}=0 \Longrightarrow x=0$. Similarly $y=0$.
5. When $n=1$ we have $(1+x)^{n}=1+x$ so the inequality holds (and is actually a equality). Suppose the claim is true for n, then
$(1+x)^{n+1}=(1+x)^{n}(1+x) \geq(1+n x)(1+x)=1+n x+x+n x^{2}=1+(n+1) x+n x^{2}>1+(n+1) x$
so the claim holds true for $n+1$ as well.
6. In class we showed that there is a unique positive number $r \in \mathbb{R}$ such that $r^{2}=5$ and $r=\sup \{x \in$ $\left.\mathbb{R} \mid x^{2}<5\right\}$. Note that \mathbb{Q} has the property that given two rational numbers $p<q$ there is a rational number s with $p<s<q$, so the same proof also shows that $r^{\prime}=\left\{\sup x \in \mathbb{Q} \mid x^{2}<5\right\}$ satisfies $\left(r^{\prime}\right)^{2}=5$ $\left(\mathbb{Q}\right.$ does not have the least upper bound property, so we must consider the set $\left\{x \in \mathbb{Q} \mid x^{2}<5\right\}$ as a subset of \mathbb{R} in order to obtain the number r^{\prime}, which is not in $\left.\mathbb{Q}\right)$. Since r is the unique positive real number satisfying $r^{2}=5$, we conclude $r=r^{\prime}$, which means the suprema are equal.
7. If $x \geq y$, then $\max \{x, y\}=x$ and

$$
\frac{1}{2}(x+y+|x-y|)=\frac{1}{2}(x+y+x-y)=\frac{1}{2}(2 x)=x
$$

Similarly if $y \geq x$ then $\max \{x, y\}=y$ and

$$
\frac{1}{2}(x+y+|x-y|)=\frac{1}{2}(x+y+y-x)=\frac{1}{2}(2 y)=y
$$

The second statement is proven similarly.
8. Given $\varepsilon>0$, by definition there is $x_{1} \in D$ such that $f\left(x_{0}\right)+g\left(x_{0}\right)>\sup _{x \in D}(f(x)+g(x))-\varepsilon$. Then

$$
\sup _{x \in D}(f(x)+g(x))<f\left(x_{0}\right)+g\left(x_{0}\right)+\varepsilon \leq \sup _{x \in D} f(x)+\sup _{x \in D} g\left(x_{0}\right)+\varepsilon
$$

Since this is true for any ε we see that

$$
\sup _{x \in D}(f(x)+g(x)) \leq \sup _{x \in D} f(x)+\sup _{x \in D} g\left(x_{0}\right)
$$

Let $D=\{1,-1\}, f(1)=1, f(-1)=-1$ and $g(1)=-1, g(-1)=1$, then $f+g$ is identically 0 , so

$$
0=\sup _{x \in D}(f(x)+g(x)) \leq \sup _{x \in D} f(x)+\sup _{x \in D} g\left(x_{0}\right)=1+1=2
$$

