1. All numbers in this problem refer to the notes. We will first show that 0-x = 0 for any z in an ordered
field. To see this, by (D) and (A4) of Definition 1.1.5 we have

0-24+0-2=(04+0)zx=0-2
Using (ii) of Definition 1.1.1 we have
0-240-240-(—2)=0-2+0-(—x)
Using (D), (A4), (A5) we have
0-240-(x+(—2))=0-(x+(—z)) < 0-2=0

Now back to the original problem. Since x < 0 we have (—z) +z < 0+ (—z) by (ii), so 0 < —z by
(A4) and (A5). Since y < z we have y + (—y) < z+ (—y) by (ii) and so 0 < z + (—y) by (A5). By (ii)
of Definition 1.1.7 we then have (—z)(z + (—y)) > 0. Using (D) and (ii) of Definition 1.1.1 we have

(—2)z 4 (-2)(=y) > 0 = (=2)z + (=2)(=y) + 2(=y) > (—2)(=y) + z(-y)
Using (D), (A5) and 0 -z = 0 we have
(=2)z + ((=2) + 2)(=y) > 2(-y) = (—2)z2+0-(=y) > x(-y) = (—2)z>x(-y)
Two applications of (ii) of Definition 1.1.1 gives
(—x)z+zz+ay > (—z)y+zz+ oy
Using (A2) and (D) we have
((=2) +2)z + 2y > ((—2) + 2)y + 22
Finally using (A5) and 0-z = 0 we get
O-z4+2y>0-y+zy = a2y > 22
which is what we want to prove.

2. By definition of the supremum, we can find a; € A such that s > a; > s — 1. Since a; # s, there is
ag € A such that s > ay > a;. More generally, having defined aq, ..., a,, we let a,11 € A be such that
$ > apt1 > an. This gives a surjective map from N to {a1,as,...} C A, so A contains a countably
infinite subset.

3. If E is empty then everything is vacously true, so suppose E # (). Every set E C S is bounded below
by 1 and above by co. If co € F, then E has an infimum is well-defined by well-ordering principle. F
has a supremum if E is finite, and if F is infinite the supremum is co. If co € F, then the infimum is
again guaranteed by well-ordering principle, and the supremum is just oco.

4. Since 22 > 0 we have 2? < 2?2 +y? =0 = 22 =0 = 2 = 0. Similarly y = 0.

5. When n = 1 we have (14 )™ = 1 + z so the inequality holds (and is actually a equality). Suppose the
claim is true for n, then

A+z)" ' =0+2)"A+2)>Q+ne)1+z)=1+nr+x+nz’* =1+ n+Dx+nz®>>1+ (n+ 1)z
so the claim holds true for n + 1 as well.

6. In class we showed that there is a unique positive number r € R such that r?> = 5 and r = sup{x €
R | 22 < 5}. Note that Q has the property that given two rational numbers p < g there is a rational
number s with p < s < ¢, so the same proof also shows that 7’ = {supx € Q | 2% < 5} satisfies ()2 =5
(Q does not have the least upper bound property, so we must consider the set {z € Q | 22 < 5} as a
subset of R in order to obtain the number r/, which is not in Q). Since r is the unique positive real
number satisfying 72 = 5, we conclude r = 7/, which means the suprema are equal.



7. If x >y, then max{z,y} = = and

1 1 1
§(x+y—|—|m—y|)=§(x+y+x—y):§(2x)=x

Similarly if y > 2 then max{z,y} = y and

1 1 1
§(x+y+|:c—y|):§(x+y+y—x):§(2y):y

The second statement is proven similarly.

8. Given € > 0, by definition there is 1 € D such that f(xo) + g(zo) > sup,cp(f(z) + g(z)) —e. Then

sup (f(z) + g(x)) < f(zo) + g(x0) + & < sup f(x) + sup g(xo) + &
rzeD zeD xzeD

Since this is true for any € we see that

sup(f(x) + g(z)) < sup f(z) + sup g(zo)
xeD x€D €D

Let D ={1,-1}, f(1) =1, f(-1) = =1 and g(1) = —1, g(—1) = 1, then f + g is identically 0, so

0 =sup(f(z)+g(x)) < sup f(x)+supg(axg) =1+1=2
z€D x€D z€D



