1. All numbers in this problem refer to the notes. We will first show that $0 \cdot x = 0$ for any x in an ordered field. To see this, by (D) and (A4) of Definition 1.1.5 we have

$$0 \cdot x + 0 \cdot x = (0 + 0)x = 0 \cdot x$$

Using (ii) of Definition 1.1.1 we have

$$0\cdot x + 0\cdot x + 0\cdot (-x) = 0\cdot x + 0\cdot (-x)$$

Using (D), (A4), (A5) we have

$$0\cdot x + 0\cdot (x + (-x)) = 0\cdot (x + (-x)) \iff 0\cdot x = 0$$

Now back to the original problem. Since x < 0 we have (-x) + x < 0 + (-x) by (ii), so 0 < -x by (A4) and (A5). Since y < z we have y + (-y) < z + (-y) by (ii) and so 0 < z + (-y) by (A5). By (ii) of Definition 1.1.7 we then have (-x)(z + (-y)) > 0. Using (D) and (ii) of Definition 1.1.1 we have

$$(-x)z + (-x)(-y) > 0 \implies (-x)z + (-x)(-y) + x(-y) > (-x)(-y) + x(-y)$$

Using (D), (A5) and $0 \cdot x = 0$ we have

$$(-x)z + ((-x) + x)(-y) > x(-y) \implies (-x)z + 0 \cdot (-y) > x(-y) \implies (-x)z > x(-y)$$

Two applications of (ii) of Definition 1.1.1 gives

$$(-x)z + xz + xy > (-x)y + xz + xy$$

Using (A2) and (D) we have

$$((-x) + x)z + xy > ((-x) + x)y + xz$$

Finally using (A5) and $0 \cdot x = 0$ we get

$$0 \cdot z + xy > 0 \cdot y + xy \implies xy > xz$$

which is what we want to prove.

- 2. By definition of the supremum, we can find $a_1 \in A$ such that $s > a_1 > s 1$. Since $a_1 \neq s$, there is $a_2 \in A$ such that $s > a_2 > a_1$. More generally, having defined a_1, \ldots, a_n , we let $a_{n+1} \in A$ be such that $s > a_{n+1} > a_n$. This gives a surjective map from \mathbb{N} to $\{a_1, a_2, \ldots\} \subset A$, so A contains a countably infinite subset.
- 3. If E is empty then everything is vacously true, so suppose $E \neq \emptyset$. Every set $E \subset S$ is bounded below by 1 and above by ∞ . If $\infty \notin E$, then E has an infimum is well-defined by well-ordering principle. E has a supremum if E is finite, and if E is infinite the supremum is ∞ . If $\infty \in E$, then the infimum is again guaranteed by well-ordering principle, and the supremum is just ∞ .
- 4. Since $x^2 \ge 0$ we have $x^2 \le x^2 + y^2 = 0 \implies x^2 = 0 \implies x = 0$. Similarly y = 0.
- 5. When n = 1 we have $(1 + x)^n = 1 + x$ so the inequality holds (and is actually a equality). Suppose the claim is true for n, then

$$(1+x)^{n+1} = (1+x)^n (1+x) \ge (1+nx)(1+x) = 1 + nx + x + nx^2 = 1 + (n+1)x + nx^2 > 1 + (n+1)x$$

so the claim holds true for n + 1 as well.

6. In class we showed that there is a unique positive number $r \in \mathbb{R}$ such that $r^2 = 5$ and $r = \sup\{x \in \mathbb{R} \mid x^2 < 5\}$. Note that \mathbb{Q} has the property that given two rational numbers p < q there is a rational number s with p < s < q, so the same proof also shows that $r' = \{\sup x \in \mathbb{Q} \mid x^2 < 5\}$ satisfies $(r')^2 = 5$ (\mathbb{Q} does not have the least upper bound property, so we must consider the set $\{x \in \mathbb{Q} \mid x^2 < 5\}$ as a subset of \mathbb{R} in order to obtain the number r', which is not in \mathbb{Q}). Since r is the unique positive real number satisfying $r^2 = 5$, we conclude r = r', which means the suprema are equal.

7. If $x \ge y$, then $\max\{x, y\} = x$ and

$$\frac{1}{2}(x+y+|x-y|) = \frac{1}{2}(x+y+x-y) = \frac{1}{2}(2x) = x$$

Similarly if $y \ge x$ then $\max\{x, y\} = y$ and

$$\frac{1}{2}(x+y+|x-y|) = \frac{1}{2}(x+y+y-x) = \frac{1}{2}(2y) = y$$

The second statement is proven similarly.

8. Given $\varepsilon > 0$, by definition there is $x_1 \in D$ such that $f(x_0) + g(x_0) > \sup_{x \in D} (f(x) + g(x)) - \varepsilon$. Then

$$\sup_{x \in D} (f(x) + g(x)) < f(x_0) + g(x_0) + \varepsilon \le \sup_{x \in D} f(x) + \sup_{x \in D} g(x_0) + \varepsilon$$

Since this is true for any ε we see that

$$\sup_{x \in D} (f(x) + g(x)) \le \sup_{x \in D} f(x) + \sup_{x \in D} g(x_0)$$

Let $D = \{1, -1\}, f(1) = 1, f(-1) = -1$ and g(1) = -1, g(-1) = 1, then f + g is identically 0, so

$$0 = \sup_{x \in D} (f(x) + g(x)) \le \sup_{x \in D} f(x) + \sup_{x \in D} g(x_0) = 1 + 1 = 2$$