1. Let $y_{n}=\lim _{n \rightarrow \infty} x_{n, m}$ and we shall show that $\lim _{n \rightarrow \infty} y_{n}=L$. The other case is similar. The sequence $\left\{y_{n}\right\}$ is well-defined by assumption. Let $\varepsilon>0$, by definition of the joint limit there is $M_{1} \in \mathbb{N}$ such that $m, n \geq M_{1} \Longrightarrow\left|x_{n, m}-L\right|<\varepsilon / 2$. By definition, for a fixed n, there is $M_{2} \in \mathbb{N}$ such that $m \geq M_{2} \Longrightarrow\left|x_{n, m}-y_{n}\right|<\varepsilon / 2$. Thus by the triangle inequality, for $n \geq M_{1}$,

$$
\left|y_{n}-L\right| \leq\left|y_{n}-x_{n, m}\right|+\left|x_{n, m}-L\right|<\varepsilon / 2+\varepsilon / 2=\varepsilon
$$

where m is chosen so that $m \geq \max \left\{M_{1}, M_{2}\right\}$, so $\lim _{n \rightarrow \infty} y_{n}=L$.
2. (a) Let $x, y \in I$ and let $\varepsilon>0$, and suppose that $K_{n} \leq K$ for all n. Since $f_{n} \rightarrow f$ uniformly, there is $N \in \mathbb{N}$ such that $n \geq N$ implies $\left|f_{n}(z)-f(z)\right| \leq|x-y|$ for all $z \in I$. Thus by the triangle inequality

$$
\begin{aligned}
|f(x)-f(y)| & \leq\left|f(x)-f_{n}(x)\right|+\left|f_{n}(x)-f_{n}(y)\right|+\left|f_{n}(y)-f(y)\right| \\
& \leq|x-y|+K|x-y|+|x-y|=(K+2)|x-y|
\end{aligned}
$$

where n is chosen so that $n \geq N$.
(b) Consider $x_{n}=4^{-n}$ and $y_{n}=4^{-n-1}$ for $n \in \mathbb{N}$, then

$$
\left|\sqrt{x_{n}}-\sqrt{y_{n}}\right|=\left|2^{-n}-2^{-n-1}\right|=\frac{1}{2^{n+1}}
$$

But on the other hand

$$
\left|x_{n}-y_{n}\right|=\left|4^{-n}-4^{-n-1}\right|=\frac{3}{4^{n+1}}
$$

So for this particular choice we have

$$
\left|\sqrt{x_{n}}-\sqrt{y_{n}}\right| \leq C\left|x_{n}-y_{n}\right| \Longrightarrow 2^{n+1} \leq 3 C \Longrightarrow C \geq \frac{2^{n+1}}{3}
$$

Since this C goes to infinity as $n \rightarrow \infty$, there is no universal constant C satsifying the condition, so f is not Lipschitz.
(c) Consider

$$
f_{n}(x)= \begin{cases}\sqrt{x} & 1 \geq x \geq 4^{-n} \\ 2^{-n} & 4^{-n}>x \geq 0\end{cases}
$$

Clearly f_{n} is continuous. We check that f_{n} is Lipschitz. Let $x, y \in[0,1]$. We have that

$$
\left|f_{n}(x)-f_{n}(y)\right|=\frac{|x-y|}{\sqrt{x}+\sqrt{y}} \leq \max _{x, y}\left\{\frac{1}{\sqrt{x}+\sqrt{y}}\right\}|x-y|=2^{n-1}|x-y|
$$

so $f_{n}(x)$ is Lipschitz with Lipschitz constant 2^{n-1}. Finally we check that $f_{n} \rightarrow f$ uniformly. Let $\varepsilon>0$. Choose N such that $2^{-N}<\varepsilon$. Then for $n \geq N$ we have

$$
\left|f_{n}(x)-f(x)\right| \leq\left\{\begin{array}{ll}
0 & 1 \geq x \geq 4^{-n} \\
2^{-n} & 4^{-n}>x \geq 0
\end{array}<\varepsilon\right.
$$

which proves the uniform convergence.
3. Define $S(x)=\sum_{n=1}^{\infty}(-1)^{n} f_{n}(x)$. By alternating series test the function S is well-defined (the pointwise limit always exists). It remains to show that $S_{N} \rightarrow S$ uniformly. Let $\varepsilon>0$. Since $f_{n} \rightarrow f$ uniformly there is $N_{0} \in \mathbb{N}$ such that $n \geq N_{0}$ implies $f_{n}<\varepsilon$. Thus for $N \geq N_{0}$ (due to the monotonicity of the even-numbered and odd-numbered terms)

$$
\left|S_{N}(x)-S(x)\right| \leq\left|f_{N+1}(x)\right|<\varepsilon
$$

which means $S_{N} \rightarrow S$ uniformly. The continuity of S follows from uniform convergence.
4. Let $f_{n}(x)=\frac{x^{n}}{n}$ for $x \in[0,1]$. It is clear that $f_{n+1}(x) \leq f_{n}(x)$ (numerator is decreasing and denominator is increasing), and that $f_{n}(x) \rightarrow 0$ uniformly. Thus by the previous problem the alternating series

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{n}}{n}
$$

converges uniformly on $[0,1]$, which is equivalent to $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$ converging uniformly on $[-1,0]$.
To evaluate the series at $x=-1$, we calculate for $x \in(-1,0)$

$$
S(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n} \Longrightarrow S^{\prime}(x)=\sum_{n=1}^{\infty} x^{n-1}=\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}
$$

Note here term by term differentiation is justified by uniform convergence (essentially interchanging limits). Thus

$$
S(x)=\int \frac{1}{1-x} d x=-\log (1-x)
$$

for $x \in(-1,0)$. Note that by the previous problem S is continuous on $[-1,0]$. Since $S(x)=-\log (1-x)$ on $(-1,0)$ we conclude

$$
S(-1)=\lim _{x \rightarrow-1}-\log (1-x)=-\log 2
$$

5. For $x<-1$ we compute

$$
f^{(n)}(x)=\frac{n!}{(1-x)^{n+1}} \Longrightarrow a_{n}=\frac{1}{(1-x)^{n+1}}
$$

where a_{n} is the coefficient of the power series representation of f centered at x. Thus the radius of convergence at x is

$$
r=\frac{1}{\lim \sup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}}=1-x
$$

which exists and is strictly positive for $x<1$. So f is real analytic on $(-\infty, 1)$.
6. (a) f is C^{1} as $f(c)=f^{\prime}(c)=0$. This function clearly satisfies the IVP when $x<c$. For $x \geq c$ we have

$$
y^{\prime}(x)=\frac{1}{2}(x-c)=\sqrt{y(x)}
$$

so the IVP is satisfied on all of \mathbb{R}.
(b) $y=0$.
(c) This is not a contradiction because the right hand side of the equation is not Lipschitz continuous (as seen in Problem 2).

