
1. Let yn = limn→∞ xn,m and we shall show that limn→∞ yn = L. The other case is similar. The sequence
{yn} is well-defined by assumption. Let ε > 0, by definition of the joint limit there is M1 ∈ N such
that m,n ≥ M1 =⇒ |xn,m − L| < ε/2. By definition, for a fixed n, there is M2 ∈ N such that
m ≥M2 =⇒ |xn,m − yn| < ε/2. Thus by the triangle inequality, for n ≥M1,

|yn − L| ≤ |yn − xn,m|+ |xn,m − L| < ε/2 + ε/2 = ε

where m is chosen so that m ≥ max{M1,M2}, so limn→∞ yn = L.

2. (a) Let x, y ∈ I and let ε > 0, and suppose that Kn ≤ K for all n. Since fn → f uniformly, there
is N ∈ N such that n ≥ N implies |fn(z)− f(z)| ≤ |x− y| for all z ∈ I. Thus by the triangle
inequality

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)|
≤ |x− y|+ K |x− y|+ |x− y| = (K + 2) |x− y|

where n is chosen so that n ≥ N .

(b) Consider xn = 4−n and yn = 4−n−1 for n ∈ N, then

|
√
xn −

√
yn| =

∣∣2−n − 2−n−1
∣∣ =

1

2n+1

But on the other hand

|xn − yn| =
∣∣4−n − 4−n−1

∣∣ =
3

4n+1

So for this particular choice we have

|
√
xn −

√
yn| ≤ C |xn − yn| =⇒ 2n+1 ≤ 3C =⇒ C ≥ 2n+1

3

Since this C goes to infinity as n→∞, there is no universal constant C satsifying the condition,
so f is not Lipschitz.

(c) Consider

fn(x) =

{√
x 1 ≥ x ≥ 4−n

2−n 4−n > x ≥ 0

Clearly fn is continuous. We check that fn is Lipschitz. Let x, y ∈ [0, 1]. We have that

|fn(x)− fn(y)| = |x− y|√
x +
√
y
≤ max

x,y

{
1√

x +
√
y

}
|x− y| = 2n−1 |x− y|

so fn(x) is Lipschitz with Lipschitz constant 2n−1. Finally we check that fn → f uniformly. Let
ε > 0. Choose N such that 2−N < ε. Then for n ≥ N we have

|fn(x)− f(x)| ≤

{
0 1 ≥ x ≥ 4−n

2−n 4−n > x ≥ 0
< ε

which proves the uniform convergence.

3. Define S(x) =
∑∞

n=1(−1)nfn(x). By alternating series test the function S is well-defined (the pointwise
limit always exists). It remains to show that SN → S uniformly. Let ε > 0. Since fn → f uniformly
there is N0 ∈ N such that n ≥ N0 implies fn < ε. Thus for N ≥ N0 (due to the monotonicity of the
even-numbered and odd-numbered terms)

|SN (x)− S(x)| ≤ |fN+1(x)| < ε

which means SN → S uniformly. The continuity of S follows from uniform convergence.

1



4. Let fn(x) = xn

n for x ∈ [0, 1]. It is clear that fn+1(x) ≤ fn(x) (numerator is decreasing and denominator
is increasing), and that fn(x)→ 0 uniformly. Thus by the previous problem the alternating series

∞∑
n=1

(−1)n
xn

n

converges uniformly on [0, 1], which is equivalent to
∑∞

n=1
xn

n converging uniformly on [−1, 0].

To evaluate the series at x = −1, we calculate for x ∈ (−1, 0)

S(x) =

∞∑
n=1

xn

n
=⇒ S′(x) =

∞∑
n=1

xn−1 =

∞∑
n=0

xn =
1

1− x

Note here term by term differentiation is justified by uniform convergence (essentially interchanging
limits). Thus

S(x) =

∫
1

1− x
dx = − log(1− x)

for x ∈ (−1, 0). Note that by the previous problem S is continuous on [−1, 0]. Since S(x) = − log(1−x)
on (−1, 0) we conclude

S(−1) = lim
x→−1

− log(1− x) = − log 2

5. For x < −1 we compute

f (n)(x) =
n!

(1− x)n+1
=⇒ an =

1

(1− x)n+1

where an is the coefficient of the power series representation of f centered at x. Thus the radius of
convergence at x is

r =
1

lim supn→∞ |an|
1/n

= 1− x

which exists and is strictly positive for x < 1. So f is real analytic on (−∞, 1).

6. (a) f is C1 as f(c) = f ′(c) = 0. This function clearly satisfies the IVP when x < c. For x ≥ c we have

y′(x) =
1

2
(x− c) =

√
y(x)

so the IVP is satisfied on all of R.

(b) y = 0.

(c) This is not a contradiction because the right hand side of the equation is not Lipschitz continuous
(as seen in Problem 2).
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