1. Let y,, = limy, 00 ©y,m and we shall show that lim,,_, y, = L. The other case is similar. The sequence
{yn} is well-defined by assumption. Let & > 0, by definition of the joint limit there is M; € N such
that m,n > My = |xnm — L| < €/2. By definition, for a fixed n, there is My € N such that
m > My = |Zpm — Yn| < /2. Thus by the triangle inequality, for n > M,

lyn = LI < lyn — Tnm| + |[Tpm — L] <&/2+¢/2=¢
where m is chosen so that m > max{M;, Ma}, so limy, 00 yn = L.

2. (a) Let #,y € I and let ¢ > 0, and suppose that K,, < K for all n. Since f, — f uniformly, there
is N € N such that n > N implies |f,(2) — f(2)| < |z —y| for all z € I. Thus by the triangle
inequality

[f(@) = fW) < [f(zx) = fa(@)] + [fu(@) = ()] + | fu(y) — f(y)]
<le—yl+ Klz—yl+ |z —yl=(K+2) |z -y
where n is chosen so that n > N.
(b) Consider x,, = 4~" and y,, = 47"~ ! for n € N, then

1
‘\/ﬁ_ \/ZE| = |2*’ﬂ - 2*“*1| = on+1

But on the other hand

3
4n+1

(20 = gl = [47" — 4771 | =

So for this particular choice we have

2n+1
IVZn = V/Un| < Clzp —yn| = Mt <30 —= C >

Since this C' goes to infinity as n — oo, there is no universal constant C satsifying the condition,
so f is not Lipschitz.

(¢) Consider

fn(x):{ﬁ bze=z4

27" 4T >z >0

Clearly f, is continuous. We check that f,, is Lipschitz. Let x,y € [0,1]. We have that

- = 7|x — y‘ max 71
fule) = )] = o < e {

so fn(z) is Lipschitz with Lipschitz constant 2"~!. Finally we check that f, — f uniformly. Let
€ > 0. Choose N such that 2=V < . Then for n > N we have

Lx—m=2”*u—y

0 1>z>4""

[fn(z) = f(2)] S{ <e

27" 4T > x>0
which proves the uniform convergence.

3. Define S(z) = > 77, (—1)" fo(z). By alternating series test the function S is well-defined (the pointwise
limit always exists). It remains to show that Sy — S uniformly. Let ¢ > 0. Since f,, — f uniformly
there is Ny € N such that n > Ny implies f,, < e. Thus for N > Ny (due to the monotonicity of the
even-numbered and odd-numbered terms)

1Sn(2) = S(@)| < |fvpa(e)] <e

which means Sy — S uniformly. The continuity of S follows from uniform convergence.



4.

6.

Let fo(x) = % for z € [0, 1]. It is clear that f,+1(x) < fn(z) (numerator is decreasing and denominator
is increasing), and that f, () — 0 uniformly. Thus by the previous problem the alternating series

St
n=1

converges uniformly on [0, 1], which is equivalent to $.°° £~

n—1 = converging uniformly on [—1,0].

To evaluate the series at x = —1, we calculate for z € (—1,0)

S(m)zix: = S’(x):ix"_lzix": 1ix

Note here term by term differentiation is justified by uniform convergence (essentially interchanging
limits). Thus

S(:c)z/ L dx = —log(1l — x)

1—2z

for © € (—1,0). Note that by the previous problem S is continuous on [—1, 0]. Since S(z) = —log(l—=z)
on (—1,0) we conclude

S(—1) = lim —log(l—=z)= —log2

r——1

. For z < —1 we compute

()= ™ -t
f (Z‘) - (1 _ (E)"+1 = Gn = (1 _ x)n+1

where a,, is the coefficient of the power series representation of f centered at x. Thus the radius of
convergence at x is

1
T = =
limsup,, \an\l/n
which exists and is strictly positive for z < 1. So f is real analytic on (—o0,1).

(a) fis C*as f(c) = f'(c) = 0. This function clearly satisfies the IVP when 2 < ¢. For z > ¢ we have

y(@)= 3~ ) = Vyl@)

so the IVP is satisfied on all of R.

(b) y=0.
(c¢) This is not a contradiction because the right hand side of the equation is not Lipschitz continuous
(as seen in Problem 2).



