1. When $n=1$ we have $n^{3}+5 n=6$ which is obviously divisible by 6 . Now suppose the assertion is true for n, then

$$
(n+1)^{3}+5(n+1)=n^{3}+3 n^{2}+3 n+1+5 n+5=n^{3}+5 n+3 n(n+1)+6
$$

By inductive hypothesis, it remains to prove that $3 n(n+1)$ is divisible by 6 . But this is easy as there must be an even number between two consecutive natural numbers, so 2 divides $n(n+1)$, which implies 6 divides $3 n(n+1)$.
2. Suppose for a contradiction that there is $p, q \in \mathbb{N}$ such that $x=p / q$ in lowest terms (that is, the greatest common divisor of p and q is 1). Then

$$
\frac{p^{2}}{q^{2}}=6 \Longrightarrow p^{2}=6 q^{2}
$$

This means p has to be even. Writing $p=2 p_{0}$ and inserting it in the above equation yields

$$
4 p_{0}^{2}=6 q^{2} \Longrightarrow 2 p_{0}^{2}=3 q^{2}
$$

This means q has to be even as well, contradicting the fact that x is expressed in lowest terms.
3. As the hint suggests, let F_{n} be the set of factors of n which is greater than 1 . Note F_{n} is not empty since $n \in F_{n}$. By well-ordering principle there is a least element, say p, in F_{n}. We claim that p is a prime. Indeed, suppose that p is not a prime, then we can write $p=p_{0} q_{0}$ where $p_{0}, q_{0}>1$ are factors of p. It follows that $p_{0}<p$ and $p_{0} \in F_{n}$, a contradiction to our choice of p.
4. Consider the map $F: 2^{A} \rightarrow P(A)$ constructed in the following way: given $f \in 2^{A}, F$ sends f to the set

$$
\{a \in A \mid f(a)=2\}
$$

That is, the subset of A whose element are those mapped to 1 by $f . F$ is an injection: given two distict maps f and g there is $a_{0} \in A$ such that $f\left(a_{0}\right) \neq g\left(a_{0}\right)$. Say $f\left(a_{0}\right)=2$ and $g\left(a_{0}\right)=1$, then $a_{0} \in F(f)$ but $a_{0} \neq F(g)$, so $F(f) \neq F(g)$. F is also a surjection: given any $A_{0} \subset A$ we let $f_{0} \in 2^{A}$ be defined as

$$
f_{0}(a)= \begin{cases}2 & a \in A_{0} \\ 1 & a \notin A_{0}\end{cases}
$$

One easily checks that $F\left(f_{0}\right)=A_{0}$. So F is the desired bijection.
5. Let A be a subset of \mathbb{N} that is not finite. By the well-ordering principle there is a least element of A, say a_{1}. Since A is not finite, so is $A \backslash\left\{a_{1}\right\}$ and there is another least element of $A \backslash\left\{a_{1}\right\}$, say a_{2}. Continuing this way, we can define a map $f: \mathbb{N} \rightarrow A$ inductively by assigning $f(1)=a_{1}$, and, having defined $f(1), \ldots, f(n), f(n+1)=a_{n+1}$, the least element of the (infinite) set $A \backslash\{f(1), \ldots, f(n)\}$, for $n \geq 1$. One easily checks that f is a bijection and so A is countable.
In general given any countable set B, let $g: B \rightarrow \mathbb{N}$ be a bijection. A subset of $B_{0} \subset B$ is in bijection with $g\left(B_{0}\right)$, which is finite or countable by the above paragraph.
6. Let $f_{n}: \mathbb{N} \rightarrow A_{n}$ be the corresponding bijections. Let

$$
G=\left\{2^{n} 3^{m} \mid n, m \in \mathbb{N}\right\}
$$

G is evidently countable as a subset of \mathbb{N} by Problem 5. Now define $f: G \rightarrow A$ by

$$
f\left(2^{n} 3^{m}\right)=f_{n}(m)
$$

One checks easily that f is indeed a surjection, so A is at most countable. Finally note that A_{1} is countable and $A_{1} \subset A$, so A is countable (that is, A cannot be finite).
7. Let $f_{B}: \mathbb{N} \rightarrow B$ be a bijection, then

$$
A \times B=\bigcup_{n \in \mathbb{N}} A \times\left\{f_{B}(n)\right\}
$$

which is countable by Problem 6 (applied to $A_{n}=A \times\left\{f_{B}(n)\right\}$ which is countable).
To see \mathbb{Q} is countable, let $f: \mathbb{Z} \times \mathbb{N} \backslash\{0\} \rightarrow \mathbb{Q}$ be given by $f(p, q)=p / q . f$ is a surjection so

$$
|\mathbb{Q}| \leq|\mathbb{Z} \times \mathbb{N} \backslash\{0\}|
$$

the right hand side of which is countable by part a).
8. We claim that $P_{\text {finite }}(\mathbb{N})$ is countable. Denote by $P_{n}(\mathbb{N})$ the subsets of \mathbb{N} of exactly n elements, then

$$
P_{\text {finite }}(\mathbb{N})=\bigcup_{n \in \mathbb{N}} P_{n}(\mathbb{N})
$$

By Problem 6, it remains to show that each $P_{n}(\mathbb{N})$ is countable. To see this, denote by $P_{n}\left(\mathbb{N}_{m}\right)$ the subsets of $\mathbb{N}_{m}=\{1, \ldots, m\}$ of exactly n elements (so when $n>m, P_{n}\left(\mathbb{N}_{m}\right)=\emptyset$). Then we can write

$$
P_{n}(\mathbb{N})=\bigcup_{m \in \mathbb{N}} P_{n}\left(\mathbb{N}_{m}\right)
$$

which is countable by Problem 6, since this time every set on the right hand side is finite.

