
1. When n = 1 we have n3 + 5n = 6 which is obviously divisible by 6. Now suppose the assertion is true
for n, then

(n + 1)3 + 5(n + 1) = n3 + 3n2 + 3n + 1 + 5n + 5 = n3 + 5n + 3n(n + 1) + 6

By inductive hypothesis, it remains to prove that 3n(n + 1) is divisible by 6. But this is easy as there
must be an even number between two consecutive natural numbers, so 2 divides n(n+1), which implies
6 divides 3n(n + 1).

2. Suppose for a contradiction that there is p, q ∈ N such that x = p/q in lowest terms (that is, the greatest
common divisor of p and q is 1). Then

p2

q2
= 6 =⇒ p2 = 6q2

This means p has to be even. Writing p = 2p0 and inserting it in the above equation yields

4p20 = 6q2 =⇒ 2p20 = 3q2

This means q has to be even as well, contradicting the fact that x is expressed in lowest terms.

3. As the hint suggests, let Fn be the set of factors of n which is greater than 1. Note Fn is not empty
since n ∈ Fn. By well-ordering principle there is a least element, say p, in Fn. We claim that p is a
prime. Indeed, suppose that p is not a prime, then we can write p = p0q0 where p0, q0 > 1 are factors
of p. It follows that p0 < p and p0 ∈ Fn, a contradiction to our choice of p.

4. Consider the map F : 2A → P (A) constructed in the following way: given f ∈ 2A, F sends f to the set

{a ∈ A | f(a) = 2}

That is, the subset of A whose element are those mapped to 1 by f . F is an injection: given two distict
maps f and g there is a0 ∈ A such that f(a0) 6= g(a0). Say f(a0) = 2 and g(a0) = 1, then a0 ∈ F (f)
but a0 6= F (g), so F (f) 6= F (g). F is also a surjection: given any A0 ⊂ A we let f0 ∈ 2A be defined as

f0(a) =

{
2 a ∈ A0

1 a 6∈ A0

One easily checks that F (f0) = A0. So F is the desired bijection.

5. Let A be a subset of N that is not finite. By the well-ordering principle there is a least element of
A, say a1. Since A is not finite, so is A \ {a1} and there is another least element of A \ {a1}, say a2.
Continuing this way, we can define a map f : N → A inductively by assigning f(1) = a1, and, having
defined f(1), . . . , f(n), f(n + 1) = an+1, the least element of the (infinite) set A \ {f(1), . . . , f(n)}, for
n ≥ 1. One easily checks that f is a bijection and so A is countable.

In general given any countable set B, let g : B → N be a bijection. A subset of B0 ⊂ B is in bijection
with g(B0), which is finite or countable by the above paragraph.

6. Let fn : N→ An be the corresponding bijections. Let

G = {2n3m | n,m ∈ N}

G is evidently countable as a subset of N by Problem 5. Now define f : G→ A by

f(2n3m) = fn(m)

One checks easily that f is indeed a surjection, so A is at most countable. Finally note that A1 is
countable and A1 ⊂ A, so A is countable (that is, A cannot be finite).
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7. Let fB : N→ B be a bijection, then

A×B =
⋃
n∈N

A× {fB(n)}

which is countable by Problem 6 (applied to An = A× {fB(n)} which is countable).

To see Q is countable, let f : Z× N \ {0} → Q be given by f(p, q) = p/q. f is a surjection so

|Q| ≤ |Z× N \ {0}|

the right hand side of which is countable by part a).

8. We claim that Pfinite(N) is countable. Denote by Pn(N) the subsets of N of exactly n elements, then

Pfinite(N) =
⋃
n∈N

Pn(N)

By Problem 6, it remains to show that each Pn(N) is countable. To see this, denote by Pn(Nm) the
subsets of Nm = {1, . . . ,m} of exactly n elements (so when n > m, Pn(Nm) = ∅). Then we can write

Pn(N) =
⋃
m∈N

Pn(Nm)

which is countable by Problem 6, since this time every set on the right hand side is finite.
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