Mathematic 405, Fall 2019: Assignment \#8
 Due: Wednesday, November 6th

Instructions: Please ensure that your answers are legible. Also make sure that sufficient steps are shown. Page numbers refer to the course text.

Problem \#1. Let $f:[a . b] \rightarrow \mathbb{R}$ be Riemann integrable. Show that for any $\epsilon>0$, there is a partition $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ so that for any choice of sample points $x_{k}^{*} \in\left[x_{k-1}, x_{k}\right], 1 \leq k \leq n$, one has

$$
\left|\int_{a}^{b} f(x) d x-\sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x_{k}\right|<\epsilon
$$

This sum is called a Riemann sum.
Problem \#2. Show the mean value theorem for integrals. That is show that if $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then there is a $c \in[a, b]$ so that

$$
\int_{a}^{b} f(x) d x=f(c)(b-a)
$$

Problem \#3. Show that if $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable on $[a, b]$ and $g:[a, b] \rightarrow \mathbb{R}$ is equal to f except possibly at $c \in[a, b]$ (i.e. $f(x)=g(x)$ for $x \in[a, b], x \neq c$), then g is Riemann integrable and

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} g(x) d x
$$

Problem \#4. Show that if $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then the triangle inequality holds

$$
\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x
$$

Why is this problem much harder if you only assume f is Riemann integrable? (You do not need to prove this case).

Problem \#5. Show that if $f:[a, b] \rightarrow \mathbb{R}$ is monotone increasing, then f is Riemann integrable.
Problem \#6. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous.
a) Show that if $\int_{a}^{b}(f(x))^{2} d x=0$, then f is identically zero.
b) Show that if $\int_{a}^{b} f(x) \phi(x) d x=0$ for every $\phi \in C^{0}([a, b])$ with $\phi(a)=\phi(b)=0$, then f is identically zero.

Problem \#7. Prove the integration by parts formula, that is show that if F and G are C^{1} functions, on (c, d) and $[a, b] \subset(c, d)$, then

$$
\int_{a}^{b} F(x) G^{\prime}(x) d x=F(b) G(b)-F(a) G(b)-\int_{a}^{b} F^{\prime}(x) G(x) d x
$$

Problem \#8. Use integration to show that if $f:(-2,2) \rightarrow \mathbb{R}$ is C^{1} and $f(0)=0$ and $f^{\prime}(x) \geq x$ for all $x \in(-2,2)$, then $f(x) \geq \frac{1}{2} x^{2}$ on $[0,2)$. What happens on $(-2,0]$?

