Mathematic 405, Fall 2019: Assignment #7

Due: Wednesday, October 30th

Instructions: Please ensure that your answers are legible. Also make sure that sufficient steps are shown. Page numbers refer to the course text.

Problem #1. Let *I* be a open interval and $x_0 \in I$. Suppose $f: I \to \mathbb{R}$ is differentiable at $x_0 \in I$ and let $g(x) = f(x_0) + m(x - x_0)$ be an affine function

- a) Show that there is a $\delta > 0$ and a C > 0 so that if $x \in I$ has $|x x_0| < \delta$, then $|f(x) g(x)| \le C|x x_0|$.
- b) Show that $m = f'(x_0)$ if and only if for every $\epsilon > 0$, there is a $\delta > 0$ so that $x \in I$ and $|x x_0| < \delta$ implies $|f(x) g(x)| \le \epsilon |x x_0|$.

Problem #2. Show that there is no differentiable function $f: (-2,2) \to \mathbb{R}$ so that

$$f'(x) = \begin{cases} 1 & x \in (-2,0) \\ -1 & x \in [0,2) \end{cases}$$

Problem #3. Suppose there is an $\epsilon > 0$ and a C > 0 so that $f : \mathbb{R} \to \mathbb{R}$ satisfies $|f(x) - f(y)| \le C|x - y|^{1+\epsilon}$ for every $x, y \in \mathbb{R}$. Show that f is constant.

Problem #4. Suppose that $f : [0,1] \to \mathbb{R}$ is continuous and differentiable on (0,1). Moreover, suppose that f(0) = 0 and $f'(x) \le x$ for $x \in (0,1)$.

- a) Use the Mean Value Theorem to show that $f(x) \leq x^2$.
- b) Show that in fact $f(x) \leq \frac{x^2}{2}$. Hint: consider the function $g(x) = f(x) \frac{x^2}{2}$.

Problem #5. We say a function $f : [a,b] \to \mathbb{R}$ is *convex* if, for all $a \le x < y \le b$ and $t \in [0,1]$, $f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$.

- a) Show that if f is convex on [a, b] and has a relative minimum at $c \in (a, b)$, then c is an absolute minimum.
- b) Show that if f is convex on [a, b] and has an absolute maximum at $c \in (a, b)$, then f is constant.

Problem #6. Show that if $f : [a, b] \to \mathbb{R}$ is continuous and twice differentiable on (a, b) and $f''(x) \ge 0$ for all $x \in (a, b)$, then f is convex as defined above. Hint: Fix x, y and consider the function g(t) = f(tx + (1-t)y) - tf(x) + (1-t)f(y).

Problem #7. Let $f(x) = |x|^3$ on \mathbb{R} . Compute f'(x) and f''(x), but show f'''(0) does not exist.

Problem #8. Do Exercise 5.1.1 of Lebl's book.