Mathematic 405, Fall 2019: Assignment \#7
 Due: Wednesday, October 30th

Instructions: Please ensure that your answers are legible. Also make sure that sufficient steps are shown. Page numbers refer to the course text.

Problem \#1. Let I be a open interval and $x_{0} \in I$. Suppose $f: I \rightarrow \mathbb{R}$ is differentiable at $x_{0} \in I$ and let $g(x)=f\left(x_{0}\right)+m\left(x-x_{0}\right)$ be an affine function
a) Show that there is a $\delta>0$ and a $C>0$ so that if $x \in I$ has $\left|x-x_{0}\right|<\delta$, then $|f(x)-g(x)| \leq C\left|x-x_{0}\right|$.
b) Show that $m=f^{\prime}\left(x_{0}\right)$ if and only if for every $\epsilon>0$, there is a $\delta>0$ so that $x \in I$ and $\left|x-x_{0}\right|<\delta$ implies $|f(x)-g(x)| \leq \epsilon\left|x-x_{0}\right|$.

Problem \#2. Show that there is no differentiable function $f:(-2,2) \rightarrow \mathbb{R}$ so that

$$
f^{\prime}(x)=\left\{\begin{array}{cc}
1 & x \in(-2,0) \\
-1 & x \in[0,2)
\end{array}\right.
$$

Problem \#3. Suppose there is an $\epsilon>0$ and a $C>0$ so that $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $|f(x)-f(y)| \leq C|x-y|^{1+\epsilon}$ for every $x, y \in \mathbb{R}$. Show that f is constant.

Problem \#4. Suppose that $f:[0,1] \rightarrow \mathbb{R}$ is continuous and differentiable on $(0,1)$. Moreover, suppose that $f(0)=0$ and $f^{\prime}(x) \leq x$ for $x \in(0,1)$.
a) Use the Mean Value Theorem to show that $f(x) \leq x^{2}$.
b) Show that in fact $f(x) \leq \frac{x^{2}}{2}$. Hint: consider the function $g(x)=f(x)-\frac{x^{2}}{2}$.

Problem \#5. We say a function $f:[a, b] \rightarrow \mathbb{R}$ is convex if, for all $a \leq x<y \leq b$ and $t \in[0,1]$, $f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)$.
a) Show that if f is convex on $[a, b]$ and has a relative minimum at $c \in(a, b)$, then c is an absolute minimum.
b) Show that if f is convex on $[a, b]$ and has an absolute maximum at $c \in(a, b)$, then f is constant.

Problem \#6. Show that if $f:[a, b] \rightarrow \mathbb{R}$ is continuous and twice differentiable on (a, b) and $f^{\prime \prime}(x) \geq 0$ for all $x \in(a, b)$, then f is convex as defined above. Hint: Fix x, y and consider the function $g(t)=$ $f(t x+(1-t) y)-t f(x)+(1-t) f(y)$.

Problem \#7. Let $f(x)=|x|^{3}$ on \mathbb{R}. Compute $f^{\prime}(x)$ and $f^{\prime \prime}(x)$, but show $f^{\prime \prime \prime}(0)$ does not exist.
Problem \#8. Do Exercise 5.1.1 of Lebl's book.

