Mathematic 405, Fall 2019: Assignment \#6
 Due: Wednesday, October 23th

Instructions: Please ensure that your answers are legible. Also make sure that sufficient steps are shown. Page numbers refer to the course text.

Problem \#1. For $S \subset \mathbb{R}$ let $f, g: S \rightarrow \mathbb{R}$ be continuous functions. Show that $M(x)=\max \{f(x), g(x)\}$ and $m(x)=\min \{f(x), g(x)\}$ are both continuous functions.

Problem \#2. Let $f:[0,1] \rightarrow[0,1]$ be a continuous function. Show that there is a value $c \in[0,1]$ so that $f(c)=c$. Such a c is called a fixed point of f.

Problem \#3. Suppose $f:[0,1] \rightarrow(0,1)$ is a continuous.
a) Given an example of such an f.
b) Show that no such f is onto.

Problem \#4. Set $f(x)=\left\{\begin{array}{cc}\sin (1 / x) & x \neq 0 \\ 0 & x=0\end{array}\right.$
a) Show that f is discontinuous.
b) Show that f has the intermediate value property. That is, for any choice of $a<b$, if $f(a)<y<f(b)$, then there is a $c \in(a, b)$ so $f(c)=y$.

Problem \#5. Recall, the characteristic polynomial of a $n \times n$ matrix, A, is given by $p_{A}(t)=\operatorname{det}\left(t I_{n}-A\right)$ where I_{n} is the $n \times n$ identity matrix
a) Show that if n is odd that $p_{A}(t)$ has at least one real root (and so A has at least one eigenvector).
b) Show that if n is even and $\operatorname{det}(-A)=\operatorname{det}(A)<0$, then p_{A} has at least two real roots.

Problem \#6.

a) Show by example that if $f:(0,1) \rightarrow \mathbb{R}$ is continuous and $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence with $x_{n} \in(0,1)$, then $\left\{f\left(x_{n}\right)\right\}_{n=1}^{\infty}$ need not be Cauchy.
b) Show that if $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence, then so is $\left\{f\left(x_{n}\right)\right\}_{n=1}^{\infty}$.

Problem \#7. Let $f(x)=\left\{\begin{array}{cc}x^{2} & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q}\end{array}\right.$. Show that f is differentiable at $x=0$, but discontinuous everywhere else.

Problem \#8. Let $f(x)=\left\{\begin{array}{cl}x^{2} \sin (1 / x) & x \neq 0 \\ 0 & x=0\end{array}\right.$
a) Show that f is differentiable at every $x \in \mathbb{R}$ and determine its derivative.
b) Show that f^{\prime} is not continuous at $x=0$.

