Mathematic 405, Fall 2019: Assignment \#4

Due: Wednesday, October 2nd

Instructions: Please ensure that your answers are legible. Also make sure that sufficient steps are shown. Page numbers refer to the course text.

Problem \#1. Let I be a closed interval and J an open interval.
a) Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a convergent sequence with $x_{n} \in I$ show that $\lim _{n \rightarrow \infty} x_{n} \in I$.
b) Let $\left\{y_{n}\right\}_{n=1}^{\infty}$ be a convergent sequence with $y_{n} \in J$. Show by example that it may be possible for $\lim _{n \rightarrow \infty} y_{n} \notin J$.

Problem \#2. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a convergent sequence. For $k \in \mathbb{N}$ show that

$$
\lim _{n \rightarrow \infty} x_{n}^{k}=\left(\lim _{n \rightarrow \infty} x_{n}\right)^{k}
$$

Problem \#3. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ be two sequences.
a) If $\left\{a_{n}\right\}_{n=1}^{\infty}$ is bounded and $\lim _{n \rightarrow \infty} b_{n}=0$, then show $\left\{a_{n} b_{n}\right\}_{n=1}^{\infty}$ is convergent and $\lim _{n \rightarrow \infty} a_{n} b_{n}=0$.
b) Given an example where $\left\{a_{n}\right\}_{n=1}^{\infty}$ is unbounded and $\lim _{n \rightarrow \infty} b_{n}=0$ and $\left\{a_{n} b_{n}\right\}_{n=1}^{\infty}$ is divergent.
c) Give an example where $\left\{a_{n}\right\}_{n=1}^{\infty}$ is bounded and $\lim _{n \rightarrow \infty} b_{n}$ exists and is $\neq 0$ and $\left\{a_{n} b_{n}\right\}_{n=1}^{\infty}$ is divergent.

Problem \#4. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be sequence with $\lim _{n \rightarrow \infty} x_{2 n}=\lim _{n \rightarrow \infty} x_{2 n-1}=x$. Show $\lim _{n \rightarrow \infty} x_{n}=x$.
Problem \#5. Recall, the Fibonacci sequence is defined by $f_{1}=f_{2}=1$ and $f_{n}=f_{n-1}+f_{n-2}$ for $n \geq 3$.
a) Show that the sequence $x_{n}=\frac{f_{n+1}}{f_{n}}$ is well-defined and satisfies $x_{1}=1$ and $x_{n+1}=1+x_{n-1}^{-1}$.
b) Show that for $l \in \mathbb{N}$, the x_{n} satisfy $1 \leq x_{1} \leq x_{3} \leq \ldots \leq x_{2 l+1} \leq x_{2 l} \leq x_{2 l-2} \leq \ldots \leq x_{2} \leq 2$.
c) Show that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is convergent and determine $\lim _{n \rightarrow \infty} x_{n}$. (Hint: Problem 4 is helpful).

Problem \#6. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a bounded sequence. Show that

$$
\limsup _{n \rightarrow \infty} x_{n}=-\liminf _{n \rightarrow \infty}\left(-x_{n}\right)
$$

Problem \#7. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ and $\left\{y_{n}\right\}_{n=1}^{\infty}$ be bounded sequences.
a) Show that $\left\{x_{n}+y_{n}\right\}_{n=1}^{\infty}$ is a bounded sequence.
b) Show that $\lim \sup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right) \leq \limsup \sup _{n \rightarrow \infty} x_{n}+\limsup \sup _{n \rightarrow \infty} y_{n}$.
c) Show by example that it is possible for $\lim \sup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)<\lim \sup _{n \rightarrow \infty} x_{n}+\lim \sup _{n \rightarrow \infty} y_{n}$.

Bonus Problem. (Do not need to complete) Dirichlet's approximation theorem says that for any irrational number α there are an infinite number of integers p and q so that

$$
\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^{2}}
$$

a) Show that when α is irrational, for each rational $r \in \mathbb{Q}$ the set $\left\{(p, q): r=p / q,\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^{2}}\right\}$ is finite. What happens when α is rational?
b) Using Dirichlet's approximation theorem, the fact that $|\sin x| \leq|x|$ and the fact that π is irrational, show that there is a subsequence $\left\{\sin n_{k}\right\}_{k=1}^{\infty}$ of $\{\sin n\}_{n=1}^{\infty}$ so that $\lim _{k \rightarrow 0} \sin \left(n_{k}\right)=0$. (Hint: $\mid \sin (m \pi-$ $x)|=|\sin (x)|$ for $m \in \mathbb{N})$.

