Mathematic 405, Fall 2019: Assignment \#3

Due: Wednesday, September 25th

Instructions: Please ensure that your answers are legible. Also make sure that sufficient steps are shown. Page numbers refer to the course text.

Problem \#1.

a) Show that any closed interval $I=[a, b]$ is the countable infinite intersection of open intervals.
b) Show that any open interval $I=(a, b)$ is the countable infinite union of closed intervals.

Problem \#2. Define an open subset of $\mathbb{R}, U \subset \mathbb{R}$, to be set that has the property that for every $x \in U$, there is an open interval I so that $x \in I \subset U$. The empty set is considered open as it vacuously satisfies this condition.
a) Show that if $\left\{U_{\lambda}\right\}_{\lambda \in A}$ is any collection of open subsets, then $U=\bigcup_{\lambda \in A} U_{\lambda}$ is open.
b) Show that if U_{1}, \ldots, U_{n} is a finite collection of open subsets, then $U=U_{1} \cap \ldots \cap U_{n}$ is open.
c) Show by example, that there is a countable infinite collection of open subsets $\left\{U_{n}\right\}_{n \in \mathbb{N}}$ so that $V=$ $\bigcap_{i=1}^{\infty} U_{i}$ is not open.

Problem \#3. Let U be an open subset as defined above. Show that if U is non-empty, then U contains some rational number.

Problem \#4. Determine if the following series converge and if they do find their limit. Please justify your answer rigorously.
a) $\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$.
b) $\left\{\frac{(-2)^{n}}{n^{2}}\right\}_{n=1}^{\infty}$.

Problem \#5. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a convergent monotone sequence. If $\lim _{n \rightarrow \infty} x_{n}=x_{k}$ for a fixed k, then $x_{n}=x_{k}$ for all $n \geq k$.

Problem \#6.

a) Let $\left\{I_{n}\right\}_{n \in \mathbb{N}}$ be a collection of closed bounded intervals with $I_{n+1} \subset I_{n}$ for all $n \geq 1$. Show that $\bigcap_{n=1}^{\infty} I_{n}$ is non-empty.
b) Let $\left\{J_{n}\right\}_{n \in \mathbb{N}}$ be a collection of open bounded intervals with $J_{n+1} \subset J_{n}$ for all $n \geq 1$. Show by example that it is possible for $\bigcap_{n=1}^{\infty} J_{n}$ to be empty.

