Mathematic 405, Fall 2019: Assignment \#2

Due: Wednesday, September 18th

Instructions: Please ensure that your answers are legible. Also make sure that sufficient steps are shown. Page numbers refer to the course text.

Problem \#1. Let F be an ordered field. Prove directly from the axioms of that if $x, y, z \in F, y<z$ and $x<0$, then $x y>x z$.

Problem \#2. Let S be an ordered set. Suppose that $A \subset S$ is such that $s=\sup (A) \in S$ exists, but $s \notin A$. Show that A must contain a countably infinite subset.

Problem \#3. Let $S=\mathbb{N} \cup\{\infty\}$. Make this an ordered set by making $n<\infty$ for every $n \in \mathbb{N} \subset S$ and otherwise using the usual order on \mathbb{N}. Show that every $E \subset S$ is bounded and $\sup (S)$ and $\inf (S)$ both exist.

Problem \#4. Let $x, y \in \mathbb{R}$ satisfy $x^{2}+y^{2}=0$ show that $x=y=0$.
Problem \#5. Use induction to show that for any $x \in \mathbb{R}$ if $1+x>0$, then $(1+x)^{n} \geq 1+n x$.
Problem \#6. Show that as subsets of $\mathbb{R}, \sup \left\{x \in \mathbb{Q}: x^{2}<5\right\}=\sup \left\{x \in \mathbb{R}: x^{2}<5\right\}$.
Problem \#7. For $x, y \in \mathbb{R}$ show that

$$
\max \{x, y\}=\frac{1}{2}(x+y+|x-y|) \text { and } \min \{x, y\}=\frac{1}{2}(x+y-|x-y|)
$$

Problem \#8. Let A be a non-empty set and $f, g: D \rightarrow \mathbb{R}$ be two bounded functions. Show that

$$
\sup _{x \in D}(f(x)+g(x)) \leq \sup _{x \in D} f(x)+\sup _{x \in D} g(x) .
$$

Give an example to show the inequality can be strict.

