Mathematic 405, Fall 2019: Assignment \#10

 Due: Wednesday, December 4th

 Due: Wednesday, December 4th}

Instructions: Please ensure that your answers are legible. Also make sure that sufficient steps are shown. Page numbers refer to the course text.

Problem \#1. Do Exercise 6.2.13 of Section 6.2 of Lebl.
Problem \#2. Let $f_{n}: I \rightarrow \mathbb{R}$ be a sequence of Lipschitz continuous functions on an interval I (that is $|f(x)-f(y)| \leq K_{n}|x-y|$ for all $x, y \in I$ and K_{n} a constant depending on n) and suppose that f_{n} converge uniformly to a function $f: I \rightarrow \mathbb{R}$.
a) Show that if the K_{n} are uniformly bounded (independent of n), then the limit function is Lipschitz continuous.
b) Show that $f(x)=\sqrt{x}$ is not Lipschitz continuous on $[0,1]$
c) Given an example of f_{n} that converge uniformly to $f(x)=\sqrt{x}$ on $[0,1]$.

Problem \#3. Let $f_{n}:[a, b] \rightarrow \mathbb{R}$ be a sequence of continuous functions with the property that $0 \leq$ $f_{n+1}(x) \leq f_{n}(x)$ for all $x \in[a, b]$ and $n \geq 1$ and so f_{n} converges uniformly to the zero function on $[a, b]$. Show that if $S_{N}(x)=\sum_{n=1}^{N}(-1)^{n} f_{n}(x)$, then S_{N} converges uniformly to a continuous function $S:[a, b] \rightarrow \mathbb{R}$.

Problem \#4. Use the previous exercise to show that $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$ converges uniformly on $[-1,0]$. Use this calculate the value of the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$. Hint: How does the power series relate to the geometric power series $\sum_{n=1}^{\infty} x^{n}$?

Problem \#5. Recall, a function $f: I \rightarrow \mathbb{R}$ is real analytic if I is an open interval and for every $x_{0} \in I$, there is a power series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ centered at x_{0} with positive radius of convergence $R>0$ so that $f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ in $\left(x_{0}-R, x_{0}+R\right)$. We claimed in class that $f(x)=\frac{1}{1-x}$ was real analytic in $(-\infty, 1)$. Please complete the proof of this fact.

Problem \#6. Consider the initial value problem (IVP)

$$
\left\{\begin{array}{c}
y^{\prime}=\sqrt{|y|} \\
y(0)=0
\end{array}\right.
$$

a) Show that for any fixed $c \geq 0$ the function

$$
f_{c}(x)=\left\{\begin{array}{cl}
0 & x \leq c \\
\frac{1}{4}(x-c)^{2} & x>c
\end{array}\right.
$$

is C^{1} on $(-\infty, \infty)$ and satisfies the IVP. In other words, this IVP does not have a unique solution.
b) What is another solution to the IVP that is not of the form $f_{c}(x)$ for some $c \geq 0$.
c) Why does this not contradict Picard's theorem?

