### 110.108 CALCULUS 1

FALL 2012
MIDTERM 1

Name:
Recitation section:
$\qquad$ 1. Tues 1:30 (P. Shao)
2. Tues 3:00 (P. Shao)
3. Thurs 4:30 (B. Elder)
4. Thurs 3:00 (Q. Giang)
5. Thurs 1:30 (Q. Giang)

Work quickly and carefully, and write your solutions clearly. Please show your work; partial credit will be given generously.

Statement of ethics
I agree to complete this exam without unauthorized assistance from any person, materials, or device.

Signature: $\qquad$ Date: $\qquad$

| Problem | Score |
| :---: | :---: |
| 1 | $/ 12$ |
| 2 | $/ 10$ |
| 3 | $/ 10$ |
| 4 | $/ 10$ |
| 5 | $/ 52$ |
| TOTAL |  |

Problem 1 (12 points). Compute the following limits. Briefly justify the steps you take.
(a) $\lim _{x \rightarrow 0} e^{\sin \left(\frac{\pi}{2}\left(x^{2}-x+1\right)\right)}$
(b) $\lim _{x \rightarrow 9} \frac{9-x}{\sqrt{x}-3}$
(c) $\lim _{x \rightarrow-\infty} \frac{\sqrt{9 x^{6}-x}}{x^{3}+1}$

Problem 2. [10 points]
(a) Let $f$ be a function defined on an open interval containing $a$. Define " $f$ is continuous at $a$."
(b) Let $f(x)= \begin{cases}\frac{(c x+1)^{2}}{x-2}, & x \leq 1 \\ 4-c^{2} x^{2}, & x>1\end{cases}$

Find a value of $c$ such that $f$ is continuous on all of $\mathbb{R}$.

Problem 3. [10 points] Give an $\epsilon-\delta$ proof that $\lim _{x \rightarrow 2} \frac{3 x^{2}-15 x+18}{2 x-4}=-\frac{3}{2}$.

Problem 4. [10 points]
(a) Let $f(x)=\sqrt{x-2}$. Using the definition of derivative, compute $f^{\prime}(6)$.
(b) Let

$$
f(x)=\frac{4^{x}}{\sin (2 x)+\sec (2 x)}
$$

Using various differentiation rules from class, compute $f^{\prime}(x)$. You do not need to simplify your answer.

Problem 5. [10 points] Let $f(x)=\frac{1}{4} x^{2}+1$. Find an equation for the tangent line to the graph of $f$ at the point $(a, f(a))$. For which $a$ does this tangent line pass through the origin $(0,0)$ ?

