Calculus 108, Fall 2014 : Pre-Midterm Practice

Johns Hopkins University

Problem 1

Let $f(x)$ be a function defined as

$$
f(x)=3|x|-5 .
$$

- (A) Plot the graph of $f(x)$ in the $\mathrm{x}-\mathrm{y}$ plane and mark the intercepts clearly.
- (B) At which points is the function $\log f(x)$ well defined.

Problem 2

Compute the following limits. Briefly justify the steps you take.

- (A) $\lim _{x \rightarrow 2} \frac{1-\frac{2}{x}}{x^{2}-4}$
- (B) $\lim _{x \rightarrow 1} \frac{x^{2}-3 x-2}{x^{2}+x-1}$
- (C) $\lim _{x \rightarrow \infty} \frac{e^{x}-e^{-2 x}}{e^{3 x}+e^{-4 x}}$
- (D) $\lim _{x \rightarrow 0} \frac{\sin 5 x}{\sin 4 x}$
- (E) $\lim _{x \rightarrow 0} \frac{\sin x^{2}}{x}$

Problem 3

Find all asymptotes (horizontal and vertical) for the function

$$
f(x)=\frac{\sqrt{4 x^{2}+1}}{x+1}
$$

Nishanth Gudapati, gudapati@math.jhu.edu

Problem 4

Let c and d be constants, and define

$$
f(x)= \begin{cases}c x-1, & x \in(-\infty,-1) \\ c^{2} x^{2}+c x+d, & x \in[-1,0] \\ \frac{\sin (1 / x)}{\ln (1 / x)}, & x \in(0, \infty)\end{cases}
$$

Do there exist $c, d \in \mathbb{R}$ such that f is continuous on all of \mathbb{R} ? If so, find them. If not, explain why.

Problem 5

Find the derivative of the following functions, wherever it exists

- (A) $x^{5} \sqrt[3]{x^{3}-8}$
- (B) $\sqrt{x+\sqrt{x}}$
- (C) $\frac{\log \sin x}{\log \cos x}$
- (D) $x^{3} \tan ^{-1}\left(x^{3}\right)$

Problem 6

Use logarithmic differentiation to find the derivative of the following functions. Please note that \log stands for $\log _{e}$

- (A) $\frac{\left(x^{2}+2\right)^{2}}{\left(x^{4}+4\right)^{4}}$
- (B) $(\sin x)^{\log x}$
- (C) $(\log x)^{\cos x}$

[^0]
[^0]: Nishanth Gudapati, gudapati@math.jhu.edu

