Solutions Midterm Exam 1 - Oct. 7, 2015

1. (20 points) Let $f(x)=2 x^{2}+4 x-1$. Determine the largest value $R>0$ so that f is one-to-one on the interval $(-R, R)$. Determine f^{-1}, the inverse of f on this interval. What is the domain of f^{-1} ?

We re-write f as

$$
f(x)=2(x+1)^{2}-3
$$

and observe that this is the translation and vertical stretch of the function $y=x^{2}$. In particular, we see that the function is decreasing on $(-\infty,-1]$ and increasing on $[-1, \infty)$ and so the largest open interval on which the function is one-to-one is $(-1,1)$.
To determine the inverse function we solve

$$
y=2(x+1)^{2}-3
$$

for x. Doing so, we see that

$$
x=-1 \pm \sqrt{\frac{1}{2}(y+3)} .
$$

As x has to lie in $(-1,1)$ we conclude that

$$
f^{-1}(y)=-1+\sqrt{\frac{1}{2}(y+3)} .
$$

Finally, as the domain of f^{-1} is the range of f, we see that the domain is $(f(-1), f(1))=(-3,5)$.
2. Evaluate the following limits. You may use any technique you like as long as you justify your steps.
(a) (10 points) $\lim _{x \rightarrow 1} \cos \left(\pi \frac{\sqrt{x}-1}{x-1}\right)$.

As $\cos (\pi x)$ is continuous at all values x, we have

$$
\lim _{x \rightarrow 1} \cos \left(\pi\left(\frac{\sqrt{x}-1}{x-1}\right)\right)=\cos \left(\pi\left(\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1}\right)\right)
$$

provided the second limit exists. Hence, as

$$
\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1}=\lim _{x \rightarrow 1}\left(\frac{\sqrt{x}-1}{x-1} \frac{\sqrt{x}+1}{\sqrt{x}+1}\right)=\lim _{x \rightarrow 1} \frac{1}{\sqrt{x}+1}=\frac{1}{2}
$$

the limit exists and equals $\cos (\pi / 2)=0$.
(b) (10 points) $\lim _{x \rightarrow 0} \frac{\tan (2 x) \sin (x)}{x^{2}}$.

Observe that if $f(x)=\tan (2 x)$, then $f(0)=0$. We then have

$$
\lim _{x \rightarrow 0} \frac{\tan (2 x)}{x}=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=f^{\prime}(0)=2 .
$$

Where we used that $f^{\prime}(x)=2 \sec ^{2}(2 x)$ so $f^{\prime}(0)=2$. Similarly, if $g(x)=\sin (x)$, then

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=\lim _{x \rightarrow 0} \frac{g(x)-g(0)}{x-0}=g^{\prime}(0)=\cos (0)=1
$$

Hence, by the product law

$$
\lim _{x \rightarrow 0} \frac{\tan (2 x) \sin (x)}{x^{2}}=\left(\lim _{x \rightarrow 0} \frac{\tan (2 x)}{x}\right)\left(\lim _{x \rightarrow 0} \frac{\sin (x)}{x}\right)=2 * 1=2 .
$$

3. Give examples of functions with the given property. You do not need to justify your answers.
(a) (5 points) A jump discontinuity at $x=2$.

$$
f(x)= \begin{cases}x & x \geq 2 \\ 0 & x<2\end{cases}
$$

(b) (5 points) An infinite discontinuity at $x=-1$.

$$
f(x)=\frac{1}{(x+1)^{2}}
$$

(c) (5 points) A removable discontinuity at $x=0$.

$$
f(x)= \begin{cases}x & x \neq 0 \\ 3 & x=0\end{cases}
$$

(d) (5 points) A discontinuity at $x=0$ which is not one of the preceding three types.

$$
f(x)=\left\{\begin{array}{cc}
0 & x=0 \\
\sin \left(\frac{1}{x}\right) & x \neq 0
\end{array}\right.
$$

4. Let $f(x)=x^{3}-2 x^{2}-x+2$.
(a) (10 points) Determine the equation of the tangent line to $y=f(x)$ at ($a, f(a)$) when $a=2$.

The slope of the tangent line at $(a, f(a))$ is given by $f^{\prime}(a)=3 a^{2}-4 a-1$. Hence, the general equation of the tangent line is $y=\left(3 a^{2}-4 a-1\right)(x-a)+a^{3}-2 a^{2}-a+2$. When $a=2$, this equation becomes $y=3(x-2)$.
(b) (10 points) Determine the value(s) a so the tangent line at ($a, f(a)$) is parallel to the line $y=-2 x$.

The slope of the tangent line at $(a, f(a))$ is given by $f^{\prime}(a)=3 a^{2}-4 a-1$. Hence, the tangent line is parallel to the line $y=-2 x$ when and only when $3 a^{2}-4 a-1=-2$ that is $3 a^{2}-4 a+1=0$. One can factor $\left(3 a^{2}-4 a+1\right)=(3 a-1)(a-1)$ and so conclude that a must be either 1 or $1 / 3$.
5. (20 points) Let f be a function so that $f(1)=1, f^{\prime}(1)=-1$ and $f^{\prime \prime}(1)=2$. If $h(x)=f(f(x))$ determine $h^{\prime \prime}(1)$.

Using the Chain Rule, we have that

$$
h^{\prime}(x)=f^{\prime}(f(x)) f^{\prime}(x)
$$

and so, using the Product rule and the Chain Rule again, we conclude that

$$
\left.h^{\prime \prime}(x)=f^{\prime \prime}(f(x))\left(f^{\prime}(x)\right)^{2}+f^{\prime}(f(x)) f^{\prime \prime}(x)\right) .
$$

Hence, $h^{\prime \prime}(1)=f^{\prime \prime}(f(1))\left(f^{\prime}(1)\right)^{2}+f^{\prime}(f(1)) f^{\prime \prime}(1)=2(-1)^{2}-1 * 2=0$.

