Math 108 – Calculus I Practice Final 12/08/2010

				Grading
► PRI	NTE	D name:		
				1
► Pleas	se ci	rcle your se	ection:	2
(1) T 1	:30	Gilman 17	Ariturk, Sinan	3
(2) T 3	8:00	Hodson 210	Tran, Timothy	
(3) Th	1:30	Maryland 309	Ravit, Jason	4
(4) Th :	3:00	Hodson 316	Tran, Timothy	
			the pledge:	5
			his exam without unauthorized terials, or device.	6
				7
				8
Signature:			Date:	
				Total:

▶ This is a 3-hour closed book exam. No notes, books, or calculators are allowed. ▶ This examination booklet contains 8 problems, on 14 sheets of paper including the front cover. Some questions take more than one page. Please detach the last two pages, which are intended for use as scrap paper.

▶ Show all work. The correct answer is worth no points without any argumentation. Feel free to use the other side of a paper if necessary, but make sure to give directions to match your solution and the problem.

1 (40 pts, 5 for each) Evaluate the following limits

a) $\lim_{x \to -3} \frac{x^2 + 5x + 6}{x^2 + 4x + 3}$

b) $\lim_{x \to \infty} \frac{x^2 + 5x + 6}{x^2 + 4x + 3}$

c) $\lim_{x\to 0} \frac{x^2+5x+6}{x^2+4x+3}$

d) $\lim_{x\to\infty}(\sqrt{x^2+4}-x)$

e) $\lim_{x\to 0} e^{x\cos(e^{-1/x})}$

f) $\lim_{x\to\infty}\frac{1}{x\sin(2/x)}$

g) $\lim_{x\to\infty} (1+\frac{1}{2x})^x$

h) $\lim_{x\to\infty} x^{1/x}$

2 (30 pts, 6 for each.) Find the derivatives y' = f'(x) of the following functions y = f(x).
a) f(x) = ln(sin(x² + 1))

b) $f(x) = (x^2 + 1) \tan^{-1}(x)$

c) $f(x) = (\cos x)^{\sin x} \ (x \in (0, \pi/2))$

d) $\int_{\ln x}^{x} \sin(e^{t}) dt$

e)
$$xy + \ln y = 2x^2 + y^2 + 3$$

3 (40 pts, 10 for each.) Evaluate the following integrals.

a) $\int (\sec \theta)^2 \tan \theta d\theta$

b) $\int_{-1}^{1} \frac{x^3}{1+x^4} dx$

c) $\int_0^{-1} \frac{2x}{1+x^4} dx$

d) $\int_{-2}^{2} |x^2 - 1| dx$

4 (10 pts.) Prove that there is one and only one real root for the equation $2x - 1 - \sin x = 0$.

- **5** (8+8+4=20 pts.) Let $f(x) = e^{2x} + e^{x}$.
- i) Show that f(x) is one to one.
- ii) Find the inverse function $f^{-1}(x)$ (state domain explicitly).
- iii) What is the range of $f^{-1}(x)$?

6 (20 pts.)Let $g(x) = \int_0^{x^3} \cos t dt$,

(a) Find the maximum possible value of $\frac{g'(x)}{x^2}$ for x > 0.

(b) Find the absolute maximum value of g(x) in the interval $[0, (\frac{\pi}{2})^{1/3}]$.

7 (20 pts.)Sketch the regions and find the areas.

a) between $y = \cos x$ and $y = 2 - \cos x$, for $0 \le x \le 2\pi$. b) the region bounded by the parabola $y = x^2$, the tangent line to this parabola at (1, 1), and the x-axis.

8 (20 pts.)Find the two volumes generated by rotating the regions bounded by the given curves about the specified axes. Sketch the regions.

- (a) y = 3 + 2x x² and x + y = 3, about y-axis,
 (b) y = x² and x = y², about y = -1.

This page is intended for use as scrap paper.

This page is intended for use as scrap paper.

Some Formulas

Four your convenience, please DETACH this page before the Exam

$$a^{2} - b^{2} = (a - b)(a + b), \ a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$$

Binomial formula for $ax^2 + bx + c = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Trigonometric, logarithmic and exponential functions

$\sin^2 x + \cos^2 x = 1$	$\sin(x+y) = \sin x \cos y + \sin y \cos x$
$\cos(x+y) = \cos x \cos y - \sin x \sin y$	$\sec^2 x = 1 + \tan^2 x$
$\log_a b = \frac{\ln b}{\ln a}$	$\ln a = b \Leftrightarrow e^b = a$ $(e^a)^b = e^{ab}$
$e^{a+b} = e^a \cdot e^b$	
$\ln(a \cdot b) = \ln a + \ln b$	$\ln(a^b) = b \ln a, a^b = e^{b \ln a}$

Inverse trigonometric functions

f(x)	domain	range
$\sin^{-1}x$	[-1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
$\cos^{-1}x$	[-1, 1]	$[0,\pi]$
$\tan^{-1} x$	$(-\infty,\infty)$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$