Math 108 - Calculus I
 Practice Final 12/08/2010

- PRINTED name:

Grading
\qquad
1

- Please circle your section:
(1) T 1:30 Gilman 17 Ariturk, Sinan

3
(2) T 3:00 Hodson 210 Tran, Timothy
(3) Th 1:30 Maryland 309 Ravit, Jason
(4) Th 3:00 Hodson 316 Tran, Timothy

- Write out and SIGN the pledge:

5
I attest that I have completed this exam without unauthorized
assistance from any person, materials, or device.

6
\qquad
7
\qquad
8
Signature: \quad Date:

Total:

- This is a 3-hour closed book exam. No notes, books, or calculators are allowed.
- This examination booklet contains 8 problems, on 14 sheets of paper including the front cover. Some questions take more than one page. Please detach the last two pages, which are intended for use as scrap paper.
- Show all work. The correct answer is worth no points without any argumentation. Feel free to use the other side of a paper if necessary, but make sure to give directions to match your solution and the problem.

1 (40 pts, 5 for each) Evaluate the following limits
a) $\lim _{x \rightarrow-3} \frac{x^{2}+5 x+6}{x^{2}+4 x+3}$
b) $\lim _{x \rightarrow \infty} \frac{x^{2}+5 x+6}{x^{2}+4 x+3}$
c) $\lim _{x \rightarrow 0} \frac{x^{2}+5 x+6}{x^{2}+4 x+3}$
d) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+4}-x\right)$
e) $\lim _{x \rightarrow 0} e^{x \cos \left(e^{-1 / x}\right)}$
f) $\lim _{x \rightarrow \infty} \frac{1}{x \sin (2 / x)}$
g) $\lim _{x \rightarrow \infty}\left(1+\frac{1}{2 x}\right)^{x}$
h) $\lim _{x \rightarrow \infty} x^{1 / x}$

2 (30 pts, 6 for each.) Find the derivatives $y^{\prime}=f^{\prime}(x)$ of the following functions $y=f(x)$.
a) $f(x)=\ln \left(\sin \left(x^{2}+1\right)\right)$
b) $f(x)=\left(x^{2}+1\right) \tan ^{-1}(x)$
c) $f(x)=(\cos x)^{\sin x}(x \in(0, \pi / 2))$
d) $\int_{\ln x}^{x} \sin \left(e^{t}\right) d t$
e) $x y+\ln y=2 x^{2}+y^{2}+3$

3 (40 pts, 10 for each.) Evaluate the following integrals.
a) $\int(\sec \theta)^{2} \tan \theta d \theta$
b) $\int_{-1}^{1} \frac{x^{3}}{1+x^{4}} d x$
c) $\int_{0}^{-1} \frac{2 x}{1+x^{4}} d x$
d) $\int_{-2}^{2}\left|x^{2}-1\right| d x$

4 (10 pts.) Prove that there is one and only one real root for the equation $2 x-1-\sin x=0$.
$5\left(8+8+\mathbf{4}=\mathbf{2 0}\right.$ pts.) Let $f(x)=e^{2 x}+e^{x}$.
i) Show that $f(x)$ is one to one.
ii) Find the inverse function $f^{-1}(x)$ (state domain explicitly).
iii) What is the range of $f^{-1}(x)$?

6 (20 pts.)Let $g(x)=\int_{0}^{x^{3}} \cos t d t$,
(a) Find the maximum possible value of $\frac{g^{\prime}(x)}{x^{2}}$ for $x>0$.
(b) Find the absolute maximum value of $g(x)$ in the interval $\left[0,\left(\frac{\pi}{2}\right)^{1 / 3}\right]$.

7 (20 pts.) Sketch the regions and find the areas.
a) between $y=\cos x$ and $y=2-\cos x$, for $0 \leq x \leq 2 \pi$.
b) the region bounded by the parabola $y=x^{2}$, the tangent line to this parabola at $(1,1)$, and the x-axis.

8 (20 pts.)Find the two volumes generated by rotating the regions bounded by the given curves about the specified axes. Sketch the regions.
(a) $y=3+2 x-x^{2}$ and $x+y=3$, about y-axis,
(b) $y=x^{2}$ and $x=y^{2}$, about $y=-1$.

This page is intended for use as scrap paper.

This page is intended for use as scrap paper.

Some Formulas

$\underline{\text { Four your convenience, please DETACH this page before the Exam }}$

$$
a^{2}-b^{2}=(a-b)(a+b), a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)
$$

Binomial formula for $a x^{2}+b x+c=0$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Trigonometric, logarithmic and exponential functions

$\sin ^{2} x+\cos ^{2} x=1$	$\sin (x+y)=\sin x \cos y+\sin y \cos x$
$\cos (x+y)=\cos x \cos y-\sin x \sin y$	$\sec ^{2} x=1+\tan ^{2} x$
$\log _{a} b=\frac{\ln b}{\ln a}$	$\ln a=b \Leftrightarrow e^{b}=a$
$e^{a+b}=e^{a} \cdot e^{b}$	$\left(e^{a}\right)^{b}=e^{a b}$
$\ln (a \cdot b)=\ln a+\ln b$	$\ln \left(a^{b}\right)=b \ln a, a^{b}=e^{b \ln a}$

Inverse trigonometric functions

$f(x)$	domain	range
$\sin ^{-1} x$	$[-1,1]$	$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
$\cos ^{-1} x$	$[-1,1]$	$[0, \pi]$
$\tan ^{-1} x$	$(-\infty, \infty)$	$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

