110.108 CALCULUS 1

FALL 2012
FINAL EXAM

Name:
Recitation section:

1. Tues 1:30 (P. Shao)
2. Tues 3:00 (P. Shao)
3. Thurs 4:30 (B. Elder)
4. Thurs 3:00 (Q. Guang)
_ 5. Thurs 1:30 (Q. Guang)
Work quickly and carefully, and write your solutions clearly. Please show your work; partial credit will be given generously.

Statement of ethics
I agree to complete this exam without unauthorized assistance from any person, materials, or device.

Signature: \qquad Date: \qquad

Problem	Score
1	$/ 15$
2	$/ 15$
3	$/ 10$
4	$/ 10$
5	$/ 12$
6	$/ 10$
7	$/ 92$
8	
TOTAL	

Problem 1. [15 points] Compute the following limits.
(a) $\lim _{x \rightarrow \infty} \frac{4 x^{3}-4 x+1}{3 x^{3}-4 x^{2}+x+6}$
(b) $\lim _{x \rightarrow 1} \frac{x^{2}-3 x-2}{x^{2}+x-1}$
(c) $\lim _{x \rightarrow \infty}(1+3 x)^{1 / \ln (x)}$
(d) $\lim _{x \rightarrow 2} \frac{\ln (x)-\ln (2)}{x-2}$
(e) $\lim _{h \rightarrow 0} \frac{1}{h} \int_{x}^{x+h} \sin ^{3}(t) d t$

Problem 2. [15 points] Compute the following.
(a) $\int_{1}^{2} \frac{1}{x} d x$
(b) $\int-\frac{t^{2}}{\left(t^{3}+6\right)^{3}} d t$
(c) $\int_{-\pi / 2}^{\pi / 2} \cos \theta \cos (\pi \sin \theta) d \theta$
(d) $\int \frac{1-2 v}{1+2 v} d v$
(e) The average value of $f(x)=\frac{1}{\sqrt{5-x^{2}}}$ on $[0, \sqrt{5}]$

Problem 3. [10 points] Find $\lim _{x \rightarrow 1} \frac{5 x^{2}-15 x+10}{3 x-3}$ and give a $\delta-\epsilon$ proof that you're right.

Problem 4. [10 points] A cylindrical canister is to be made with cardboard sides and metal top and bottom. If cardboard costs $\$ 1$ per square foot and metal costs $\$ 2$ per square foot, what are the height and radius of the cylinder of greatest volume that can be made with $\$ 12$?

Problem 5. [10 points] It's holiday time, and Morris, the Math Department Administrator, is whipping up a batch of his famous eggnog.
(a) Morris is pouring the eggnog into a hemispherical bowl of radius r. Show that when the eggnog in the bowl has depth h, it occupies a volume $V=\pi\left(r h^{2}-\frac{1}{3} h^{3}\right)$. (HINT: Depending on how you set up the calculation, the formula $(a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}$ may be helpful.)
(b) If $r=9$ inches and Morris pours the eggnog in the bowl at a constant rate of 2 cubic inches per second, what's the rate of change of h when $h=3$ inches? (You may use the result of (a) even if you haven't actually done (a).)

Problem 6. [10 points] Let $I=[0, \pi]$, and let $f(x)=\int_{1}^{x+\cos x} e^{-t^{2}} d t$ for $x \in I$.
(a) Compute $f^{\prime}(x)$.
(b) Find the critical points of f on I, and at each critical point, determine whether f has a local max, a local min, or neither. What is the absolute minimum value of f on I ?

Problem 7. [12 points] Let R be the region in the plane bounded by the curves $y=2-x^{2}$ and $y=-2$. Set up, but do not evaluate, integrals to compute the following quantities.
(a) The area of R.
(b) The volume of the solid obtained by rotating R about the y-axis.
(c) The volume of the solid obtained by rotating R about the horizontal line $y=3$.
(d) The arc length of the curve $y=2-x^{2}$ between its points of intersection with $y=-2$.

Problem 8. [10 points] In this problem we're going to prove the main theorem used in exponential growth and decay problems: If f is a differentiable function defined on an open interval I and there exists a constant k such that $f^{\prime}(x)=k f(x)$ for all $x \in I$, then there exists a constant C such that $f(x)=C e^{k x}$ for all $x \in I$.
(a) Suppose that f satisfies the hypotheses of the theorem, and define $g(x)=f(x) e^{-k x}$. Show that $g^{\prime}(x)=0$ for all $x \in I$.
(b) What does the result of (a) tell you about g ? Use this to deduce the conclusion of the theorem. (To be clear, you may use the result of (a) even if you haven't actually done (a).)

