CALCULUS 110.108, FALL 2014,
 PRE-FINAL PRACTICE JOHNS HOPKINS UNIVERSITY

[
Problem 1. Find the domains of definition of the following functions
(a) $f(x)=\arcsin \left(\frac{x-3}{2}\right)-\log _{e}(4-x)$
(b) $g(x)=\sqrt{\frac{x-2}{x+2}}+\sqrt{\frac{1-x}{1+x}}$

Problem 2. Plot the graph of the following function, clearly marking the x and y intercepts, if any.

$$
f(x)=2 \sin \left(3 x+\frac{3 \pi}{4}\right)
$$

Is the function periodic, if so what is the period?
Problem 3. Find the derivative of the following functions
(a) $\cos \left(\frac{1-\sqrt{x}}{1+\sqrt{x}}\right)$
(b) $\arcsin ^{2}\left(\log _{e}\left(a^{3}+x^{3}\right)\right)$
(c) $\sqrt[3]{\frac{x\left(x^{2}+1\right)}{\left(x^{2}-1\right)^{2}}}$ (HINT: use logarithmic differentiation)

Problem 4. Compute the following limits.
(a) $\lim _{x \rightarrow 0} \frac{\sin x}{\sec x}$
(b) $\lim _{t \rightarrow 1} \frac{\cos \left(\frac{\pi}{2} t\right)}{\ln t}$.
(c) $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{2 x}$
(d) $\lim _{x \rightarrow 1}\left(\frac{1}{x-1} \int_{1}^{x} \sqrt{\tan ^{-1} t} d t\right)$
(e) $\lim _{x \rightarrow 0^{-}} \frac{e^{1 / x}}{x} \quad$ (HINT: A change of variables may be helpful.)

Problem 5. Prove that the cubic polynomial $x^{3}-3 x+c$ cannot have two different roots in the interval $(0,1)$. Explain your arguments precisely and clearly, citing all the theorems that you need.
Problem 6. Find the values of a and b for which the function

$$
f(x)=a \log _{e} x+b x^{2}+x
$$

has extrema at points $x_{1}=1$ and $x_{2}=2$. Show that for the found values of a and b, the given function has a minimum at the point x_{1} and a maximum at the point x_{2}.
Problem 7. Compute the following.
(a) $\int \sec x \tan x d x$
(b) $\int_{1}^{2}\left(x^{2}-\frac{1}{x^{2}}\right) d x$
(c) $\int_{1}^{3} \frac{e^{-1 / t^{2}}}{t^{3}} d t$
(d) An equation for the tangent line to the curve $x^{1 / 2}+y^{1 / 2}=3$ at the point $(4,1)$.

Problem 8. Using an appropriately chosen substitution, compute the following integrals
(a) $\int \frac{x}{\sqrt{a^{2}-x^{4}}} d x$
(b) $\int \frac{x\left(1-x^{2}\right)}{1+x^{4}} d x$
(c) $\int \frac{x+(\arccos 3 x)^{2}}{\sqrt{1-9 x^{2}}} d x$
(d) $\int \frac{1}{\sqrt{8+6 x-9 x^{2}}} d x$
(e) $\int \frac{1}{x^{2}+2 x+3} d x$
\square
Problem 9. Let R be the region in the first quadrant bounded by the ellipse

$$
\frac{x^{2}}{4}+\frac{y^{2}}{9}=1
$$

and the x - and y-axes. Using any method you like, find the volumes obtained by rotating R (a) around the x-axis, and (b) around the y-axis. (HINT: It's up to you to figure out the limits of integration.)
Problem 10. Suppose that f is integrable on $[a, b]$, and let m and M be constants such that $m \leq f(x) \leq M$ for all $x \in[a, b]$. Using theorems from lecture or the text, prove that the average value of f on $[a, b]$ is between m and M. (HINT: A good way to get started is to write down how the average value of f is defined.)
Further, I recommend the following problems from the textbook
Section 6.5: 2, 8, 10, 18, 26
Section 8.1: 2, 4, 6 (skip the calculator part on 4 and 6), 8,15
Section 8.2: 2(a), 4(a), 6, 8, 14.
Even though it is straightforward to extend the ideas we discussed in Section 6.2 to Section 6.3 , since technically we couldn't discuss 6.3 in the class, it will not be part of the syllabus in the final exam. The full syllabus can be found here:
http://www.math.jhu.edu/~gudapati/Calendar.pdf
Please also review all the class notes and homeworks. It was a pleasure to be your instructor, I hope all of you do well in the exam.

[^0]
[^0]: Nishanth Gudapati, gudapati@math.jhu.edu

