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1 The Axiom of Steenrod Square
In this note, we take the coefficient of ordinary cohomology to be F2.

Theorem 1.1 There exists a natural transformation between cohomology functor
Sqi : Hn(−) → Hn+i(−) satisfying the following axioms. These natural transformations are
called Steenrod Squares.

1. Sqi is a homomorphism between F2-module.
2. Sq0 = id.
3. If x ∈ Hn(X), then Sqn(x) = x2, and Sqi(x) = 0 if i > n.
4. (Cartan Formula) The relation

Sqn(xy) =
∑

i+j=n

Sqi(x)Sqj(y)

holds.
5. Sqi is a stable operation. In other words, for a coboundary map of long exact sequence

δ : Hn(X) → Hn+1(X, A), Sqi ◦ δ = δ ◦ Sqi holds.

For a tuple of non-negative integers I = (i1, i2, · · · ik), we write the composition
Sqi1Sqi2 · · · Sqik as SqI . We call k to be the length of I and we write it as l(I). Define the
degree of SqI to be i1 + i2 + · · · + ik. If i1 > 2i2, i2 > 2i3, . . . , ik−1 > 2ik holds, we call
I or SqI to be admissible. If I is admissible, we define the excess e(I) of I or SqI to be
(i1 − 2i2) + (i2 − 2i3) + · · · (ik−1 − 2ik).

Theorem 1.2 Steenrod Squares satisfy the following properties.

1. (Adem relation) If a < b, then

SqaSqb =
∑

j

(
b − 1 − j

a − 2j

)
Sqa+b−jSqj
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holds.
2. Sq1 coincides with the Bockstein homomorphism corresponding the short exact sequence

0 → Z/2Z → Z/4Z → Z/2Z → 0.

Actually, Sqi can be characterized by the properties in Theorem 1.1. Therefore it is natural
to try to deduce Theorem 1.2 from Theorem 1.1.

2 Proof of Adem Relation
I’ll introduce the proof of Adem Relation in [1]. Fix a topological space X. Define a

ring homomorphism P (t) : H∗(X) → H∗(X)[t] by x ∈ H∗(X) 7→
∑

i tiSqi(x). By abuse of
notation, we also use the same symbol P (s) for the ring homomorphism P (s) : H∗(X)[t] →
H∗(X)[t, s] defined by x ∈ H∗(X) 7→

∑
i tiSqi(x) and t 7→ t. (Note that these maps are ring

homomorphism because of Cartan formula.)

Lemma 2.1 (Bullett-Macdonald) The equation

P (t + t2) ◦ P (1) = P (1 + t) ◦ P (t2)

holds.

In order to prove this lemma, we need the following. Let xi ∈ H1((RP ∞)×q) be the pullback
of the generator x ∈ H1(RP ∞) by the projection to i-component. Let σ = x1x2 · · · xq ∈
Hq((RP ∞)×q).

Lemma 2.2 Elements in {SqI(σ) | I : admissible, deg(I) ≤ q} are linearly independent over
F2.

Proof Induction on q. This statement is clear for q = 1. Let
∑

I aISqI(σ) = 0. We show
that aI = 0 by induction on the length of I. Suppose that aI = 0 for I with l(I) > m.
Then

∑
l(I)=m aISqI(σ) +

∑
l(I)<m aISqI(σ) = 0 holds. Note that, by Künneth formula,

Hq+r((RP ∞)×q) = ⊕sHs(RP ∞) ⊗ Hq+r−s((RP ∞)×q−1) holds. Let p the projection to the
s = 2m summand. Also, let σ′ = x2x3 · xq, so that σ = x1σ′ holds. Define a tuple of integers
Jm to be Jm = {2m, 2m−1, . . . , 1}. Now we claim the following equation.

p(SqI(σ)) =

{
0, l(I) < m

x2m

1 · SqI−Jm(σ′) l(I) = m.

In fact, by the Cartan formula,

SqI(σ) = SqI(x1 · σ′) =
∑
J≤I

SqJ(x1) · SqI−J(σ′)
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holds. Also, we can easily check the following equation.

SqJ(x1) =

{
x2m

1 J = Jm

0 otherwise.

Then we can easily deduce the second equation. In addition, if l(I) < m, then l(J) < m holds,
so that p(SqI(σ)) = 0 follows. Now we have

p(
∑

l(I)=m

aISqI(σ) +
∑

l(I)<m

aISqI(σ)) = x2m

1 · (
∑

l(I)=m

aISqI−Jm(σ′)) = 0.

Because of induction hypothesis on q, aI = 0 for I with l(I) = m. Therefore, by induction on
l(I), we can deduce that aI = 0 for all I.

Lemma 2.3 Let C to be a natural transformation between cohomology defined by a linear
sum of Steenrod Squares SqI with deg(I) < q. If C(σ) = C(x1x2 · · · xq) = 0, then C = 0.

Proof Note that all natural transformations between Hq and Hn as a set functor can be
written uniquely as P (SqI1 , SqI2 , . . . , SqIk ) where P is a polynomial over F2 and I1, . . . Ik are
admissible and excess < n. (This can be shown by calculating the cohomology H∗(K(F2, n)).)
In particular, the degree of polynomial P cannot be equal or larger than 2 when n ≤ 2q, so that
the set {SqI | I : admissible, deg(I) = n − q} becomes a F2-basis of natural transformations
from Hq to Hn. Because that the image of this basis {SqI(σ) | I : admissible, deg(I) = n − q}
is linearly independent according to previous lemma, we know that the map C 7→ C(σ) is
injective.

Therefore, in order to prove Lemma 2.1, it suffices to show that the image of σ = x1 · · · xq

is equal for both terms. Because P (t) is ring homomorphism, it suffices to check when q = 1.
In this case, P (t + t2) ◦ P (1)(x) = x + (1 + t + t2)x2 + t2(1 + t)2x4 = P (1 + t) ◦ P (t2)(x) holds.
This proves Lemma 2.1.

Deduction of Adem Relations Take x ∈ Hi(X). By doing calculation, we can check that

P (t + t2) ◦ P (1)(x) =
∑
a,k

(t + t2)aSqaSqk(x),

P (1 + t) ◦ P (t2)(x) =
∑

b, j(1 + t)a+b−jt2jSqa+b−jSqj(x).

Now, for a formal Laurent series f(z) =
∑∞

k=−N akzk, we define the residue Resz=0f to be
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a−1. Now we have

∑
k

SqaSqk = Rest+t2=0
P (t + t2) ◦ P (1)(x)

(t + t2)a+1

= Rest+t2=0
P (1 + t) ◦ P (t2)(x)

(t + t2)a+1

= Rest+t2=0
∑
b,j

(1 + t)b−j−1t2j−a−1Sqa+b−jSqj(x)

= Rest=0(
∑
b,j

(1 + t)b−j−1t2j−a−1Sqa+b−jSqj(x))(t + t2)′

= Rest=0
∑
b,j

(1 + t)b−j−1t2j−a−1Sqa+b−jSqj(x).

By looking at the elements with same degree, we see

SqaSqb(x) = Rezt=0
∑

j

(1 + t)b−j−1t2j−a−1Sqa+b−jSqj(x)

=
∑

j

(
b − j − 1

a − 2j

)
Sqa+b−jSqj(x).

Note that we used the condition a < 2b for the last equation.
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