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1 Homology of MU
Recall that the spectrum MU has a canonical complex orientation tMU : CP ∞ → MU . Recall also

that H∗(CP ∞) = Z{z0, z1, z2, . . . } where each zi is the dual of the generator ti ∈ H2i(CP ∞)

Fact 1.1 Let βi ∈ H2i(BU) is the image of xi ∈ H2i(CP ∞) via the natural map CP ∞ → BU . Then,

H∗(BU) = Z[β1, β2, . . . ]

By Thom isomorphism for homology, we have a ring isomorphism H∗(MU) ∼= H∗(BU). In particular,
H∗(MU) ∼= Z[b1, b2, . . . ] where each bi is the image of zi+1 ∈ H∗(CP ∞) via the complex orientation
tMU : CP ∞ → MU .

Recall that for a complex oriented spectrum E, we have E∗(CP ∞) = π∗(E){zE
0 , zE

1 , zE
2 , . . . }. In fact,

the Atiyah-Hirzebruch spectral sequence H∗(CP ∞, π∗(E)) ⇒ E∗(CP ∞) collapses.

Lemma 1.2 If E is a complex oriented spectrum, then

E∗(MU) = π∗(E)[bE
1 , bE

2 , . . . ]

where each bE
i is the image of zE

i+1 ∈ E2i+2(CP ∞).

Proof By naturality of the Atiyah-Hirzebruch spectral sequence, each bi ∈ H2i(MU, π0(E)) = E2i,0
2 is

a permanent cycle. Since the spectral sequence is multiplicative, this spectral sequence collapses.

2 Main Theorem
If we have a complex orientation tE ∈ E2(CP ∞) for a ring spectrum E, we have a corresponding formal

group law FE(x, y). Then we have a ring homomorphism from a Lazard ring θE : L → π∗E classifying
the formal group law FE .

Theorem 2.1（Quillen） The map θMU : L → MU is isomorphism.

The strategy to prove this theorem is as follows.

(i) π∗(MU) = Z[x1, x2, . . . ] with |xi| ∈ π2i(MU).
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(ii) Let h be the Hurewicz map h : π∗(MU) → H∗(MU). Then modulo decomposables,

h(xi) =

{
pbi if i = pk − 1 for some prime p

bi otherwise.

(iii) Let gH(x) ∈ H∗(MU)[[x]] be gH(x) = x + b0x2 + b1x3 + · · · . Then show that the formal group
law induced by the map hθMU is gH(g−1

H (x) + g−1
H (y)).

At this point we can deduce the Quillen’s theorem.

Proof of Quillen’s theorem. We will show that θMU is bijection. Recall that L ∼= Z[t1, t2, . . . ] and
modulo decomposables

hθMU (ti) =

{
pbi if i = pk − 1 for some prime p

bi otherwise.

In particular hθMU is injective because L and H∗(MU) are torsion-free and hθMU induces isomorphism
after tensoring with Q. Therefore θMU is injective. Now θMU (ti) = xi modulo decomposables since we
know (ii). Since θMU is surjective on degree 0 and 2, we can inductively show that θMU is surjective on
every degree.

3 Proof of (iii)
First note that for a complex oriented ring spectrum E, E ∧ MU becomes a complex oriented ring

spectrum. In fact, both t̂E : CP ∞ → E → E ∧ MU and t̂MU : CP ∞ → MU → E ∧ MU are complex
orientations.

Lemma 3.1 t̂MU = t̂E + bE
1 t̂2

E + bE
2 t̂3

E · · · in (E ∧ MU)∗(CP ∞) = E∗(MU)[[t̂E ]].

Proof It suffices to show that ⟨t̂MU , zE∧MU
i+1 ⟩ = bE

i . Recall that

t̂MU : CP ∞ MU E ∧ MU
tMU

and

zE∧MU
i+1 : S CP ∞ ∧ E CP ∞ ∧ E ∧ MU.

zE
i+1

Then we can easily compute that

⟨x̂MU , zE∧MU
i+1 ⟩ = S CP ∞ ∧ E MU ∧ E = E ∧ MU.

zE
i+1 tMU ∧1

This means that ⟨x̂MU , zE∧MU
i+1 ⟩ is the image of zE

i+1 via the complex orientation tMU . Therefore
⟨x̂MU , zE∧MU

i+1 ⟩ = bE
i .

Corollary 3.2 Let gE(x) ∈ π∗(E ∧ MU)[[x]] be gE(x) = x + b1x2 + b2x3 · · · . In π∗(E ∧ MU)[[x, y]],

FMU (x, y) = gE(FE(g−1
E (x), g−1

E (y))).
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Proof

FMU (x̂MU ⊗ 1, 1 ⊗ x̂MU ) = α∗(t̂MU )
= α∗(gE(t̂E))
= gE(α∗(t̂MU ))
= gE(FE(x̂E ⊗ 1, 1 ⊗ x̂E))
= gE(FE(gE(x̂MU ⊗ 1), gE(1 ⊗ x̂MU ))).

By taking E = HZ, we have (iii).

4 Sketch of a proof of (i) and (ii)
Fact 4.1 There is a spectral sequence satisfying the following properties.

(a) E∗,∗
2 = Ext∗,∗

A∗
(Zp, H∗(X,Zp)) where A∗ is the dual of Steenrod algebra.

(b) If H∗(X,Zp) is of finite type, this spectral sequence converges to the p-primary part of π∗(X). In
other words, there is a filtration of p-primary part

pπn(X) = F 0,n ⊃ F 1,n−1 ⊃ F 2,n−2 ⊃ · · ·

and isomorphism F s,t/F s+1,t−1 ∼= Es,t
∞ where Es,t

∞ =
∩

Es,t
r .

(c) The edge homomorphism

πn(X) → E0,n
∞ → E0,n

2 → Homn
A∗

(Zp, H∗(X,Zp)) ∼= Hn(X,Zp)

is the Hurewicz homomorphism.

In particular, we apply X = MU in this spectral sequence. In fact, this spectral sequence collapses,
and you can show that every p-primary component is isomorphic to the polynomial ring as a group.
With a bit of algebraic argument, you can show that π∗(MU) is isomorphic to the polynomial ring. By
looking at the argument of taking generators of π∗(MU) and using the property (c), you can show (ii).
For more details, you can see Switzer’s textbook.
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