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Abstract

In this thesis, we give curvature estimates for strongly stable

constant mean curvature surfaces in a complete three dimensional

manifold. We use a key observation of Colding and Minicozzi to

obtain area and small total curvature estimates of constant mean

curvature surfaces. Then following Choi and Schoen we show

that small total curvatures yield curvature estimates. By giv-

ing a much shorter proof, this thesis extends the work of Bérard

and Hauswirth, where they gave curvature estimates for constant

mean curvature surfaces in a space form.
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Introduction

Background

Surfaces in three manifolds have been actively studied since the eighteenth

century. It is a beautiful topic in itself and it helps us to understand the

ambient three manifold because of the interaction between the surface and

the topology of the three manifold.

Let M be a three dimensional manifold with Riemannian metric g. For

any two vector fields X and Y , we have a Riemannian connection ∇ which

defines the directional derivative of Y along X by ∇XY . For any immersed

surface Σ in M , we denote by XT and XN the tangential and normal com-

ponents of X respect to Σ. Now we define two very important symmetric

bilinear forms on Σ.

First fundamental form

gΣ(X, Y ) = g(X,Y ) (1)

Here X, Y are vector fields on Σ(and also on M). This is the induced

metric g on Σ, which describes distances on the surface.

Second fundamental form

A(X,Y ) = (∇XY )N (2)

A is a vector-valued symmetric bilinear form. We can define a real-

valued form b by b(X, Y ) = g(A(X, Y ),−→n ). −→n is the unit normal

vector field on Σ.
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The second fundamental form is more interesting to us because it de-

scribes how the surface curves in the manifold. Let us look at a neighborhood

of a point. The second fundamental form b can be expressed locally as a 2×2

symmetric matrix. We find that the two eigenvalues k1 and k2 of the matrix

b are the maximal and minimal values of the curvatures of all normal slices

to the surface through the point. We call them the principal curvatures.

Moreover we define the mean curvature h = k1+k2

2
as half value of the

trace of b and Gauss curvature K = k1 ·k2 as the determinant of b. Since the

celebrated Gauss Theorem egregium says that the Gauss curvature are deter-

mined entirely by the first fundamental form, the mean curvature measures

how a surface lies in the manifold.

Definition 0.1 A constant mean curvature surface is a surface whose mean

curvatures equal some constant at any point. We denote the constant h. We

call the surface a CMC h-surface.

When h ≡ 0, we call it a minimal surface.

History

Generally constant mean curvature surfaces are not as well understood as

minimal surfaces. Until H.Wente’s CMC torus was discovered in 1984[We],

people knew very few examples of CMC surfaces(not minimal surfaces)(See

§1.1) Since then, many CMC surfaces have been discovered by different tech-

niques. However it is not very clear how h(not zero) is restricted by the

curvature of the ambient manifold. CMC surfaces need more investigation.
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Recently minimal surface theory has been rapidly developed from the per-

spective of PDEs[CM2]. Since we can locally express a minimal surface(and

a CMC surface) as the solution of a second order elliptic PDE equation, it

is natural to borrow some PDE ideas to study CMC surfaces. Curvature

estimates have played a key role in minimal surface theory. In this work, we

are going to obtain curvature estimates for CMC surfaces..

The study of curvature estimates for minimal surfaces goes back at least

to E.Heinz’s work [He] in 1952. He proved for a solution of a minimal surface

equation over a disc {x ∈ R2 : |x− x0| < R}, there is a absolute constant β

such that

(k2
1 + k2

2)(x0) ≤ β/R2 (3)

where k1 and k2 are the principal curvatures of the graph of the solution.

When the solution is on the entire R2, letting R →∞, we have k1 = k2 = 0,

so the solution is a plane, i.e., the curvature estimate (3) implies Bernstein’s

theorem in R3. In 1975, R. Schoen, L. Simon and Yau showed curvature es-

timates of minimal hyper-surfaces in higher dimensions[ScSimY], which can

give Bernstein’s theorem for higher dimensions. Note that there are simi-

lar results under additional hypotheses by F. Almgren, R.Osserman, L. Si-

mon, B. White etc. 1

In R. Schoen’s fundamental work [Sc](1983), he proved an estimate of the

Gauss curvature for stable minimal surfaces in R3, which yielded the Bern-

stein theorem for complete stable minimal surfaces in R3. His key idea was

to apply the stability inequality[See §1.2] to different well chosen functions.

1See [CM1] [CM2] for further reference.
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He obtained the result by using Simons’ inequality(See §2.1), the stability

inequality and the de Giorgi-Moser iteration. Later in 2002 [CM1], T. Cold-

ing and W. Minicozzi II found that stability implied certain upper bounds on

intrinsic balls (and general domains). Using this observation, they gave more

general and useful estimates for stable parametric elliptic integrands, which

were very useful in their important study of embedded minimal surfaces in

three manifolds[CM3]. It also provides a key ingredient for our work.

Curvature estimates for CMC surfaces were studied by J. Spruck [Sp] for

R3, Ecker and Huisken [EcHu] for higher dimensional Euclidean spaces.2 The

stability of CMC surfaces has been explored by J. Barbosa and M. do Carmo

since 1984([BaCa],[BaCaE]). It turned out there were two kinds of stabili-

ties(See §1.2), which is different from the minimal surface case. Then in 1999

P. Bérard and L. Hauswirth [BeHa] gave curvature estimates for (strongly)

stable CMC surfaces in a space form. Their work was mostly inspired by the

above work of R. Schoen[Sc], which made extensive use of the stability in-

equality and the de Giorgi-Moser iteration method. From their paper, we can

see that, for CMC surfaces in a general three manifold, curvature estimates

may become very complicated if we follow their method.

Result

Our work generalizes the results of [BeHa] to strongly stable CMC sur-

faces in a general three dimensional manifold. The main idea follows [CM1].

2See [BeHa] for further reference.
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We use a key observation in [CM1] to obtain area and total curvature es-

timates for strongly stable CMC surfaces. Then we follow H. Choi and

R. Schoen [ChSc] to show that small total curvature implies curvature esti-

mates. In [ChSc] they use a different scaling method, which is shorter and

more elementary than the de Giorgi-Moser iteration.

We state the main theorem below:

Theorem 0.1 Let Σ2 be an immersed (strongly) stable CMC h-surface with

trivial normal bundle in a complete three dimensional manifold M , where

|KM | ≤ k2. There exists 0 < r0 < π√
6(h2+k2)

, such that for any x in Σ with

geodesic ball Br0(x) ∩ ∂Σ = ∅, we have, for all 0 < σ ≤ r0,

sup
Br0−σ

|A0(x)|2 ≤ σ−2 (4)

sup
Br0−σ

|KΣ(x)| ≤ C1σ
−2 (5)

Here r0 depends on h, the curvature tensor of M and its covariant derivative.

C1 is a constant depending on h and k.

We present our work in three sections. Section 1 gives examples and

known facts about CMC surfaces. In §1.1 we give some examples in R3.

In §1.2 we induce the first and second variation formulas and the stability

inequality. In §1.3 we describe P. Bérard and L. Hauswirth’s results for CMC

surfaces in a space form [BeHa].
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Section 2 proves the tools(inequalities) of curvature estimates we need.

In §2.1 we obtain the Simons’ inequality for CMC surfaces in a general three

manifold. In §2.2 we show a useful version of the mean value inequality

for CMC surfaces. In §2.3 we show the estimates of elliptic integrands by

T.Colding and W.Minicozzi II[CM1].

Section 3 gives the proof of our main theorem. In §3.1 we obtain area

estimates and total curvature estimates which follow from §2.3. In §3.2 we

give curvature estimates for a topological disk following [ChSc]. In §3.3 we

prove the main theorem and give remarks.

Throughout this thesis, Σ denotes an immersed CMC h-surface with triv-

ial normal bundle in a complete three manifold M . g is the Riemannian met-

ric. We denote the connections ∇T and ∇, the sectional curvatures KΣ and

KM , the curvature tensors R and R respectively for the surface Σ and the

manifold M . A(or A0) is the (traceless) second fundamental form. Notice

that Br(x) denotes an intrinsic geodesic ball centered at x with radius r.
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1 Constant mean curvature surfaces

1.1 Examples in R3

Locally a surface in a three manifold is just a graph over its tangent plane. To

imagine surfaces in a three manifold, it is often useful to look at the graphs

in R3.

Let D be a domain in the (u, v) plane and X be a smooth map from D

to R3. We write

X(u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) ∈ D (6)

It is called a local parametric surface. In the local frame by Xu, Xv and

−→n = Xu∧Xv

|Xu∧Xv | ,
−→n is the unit normal vector field. We compute the fundamental

forms to obtain:

I = Edu2 + 2Fdudv + Gdv2 (7)

II = Ldu2 + 2Mdudv + Ndv2 (8)

where

E = 〈Xu, Xu〉, F = 〈Xu, Xv〉, G = 〈Xv, Xv〉,

L = 〈Xuu,−→n 〉, M = 〈Xuv,−→n 〉, N = 〈Xvv,−→n 〉.

Moreover we have

h =
1

2

GL + EN − 2FM

EG− F 2
(9)
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K =
LN −M2

EG− F 2
(10)

Now we can find some simple examples by direct computation.

Example 1 (Plane) X(u, v) = (u, v, au + bv + c). The second fundamental

form is zero, thus h = 0. Here all principal curvatures are zeros.

Example 2 (Helicoid) X(u, v) = (u cos v, u sin v, av + b). Here h ≡ 0 but

the second fundamental form is not identically 0. Helicoid is a minimal

surface. For more examples of minimal surfaces please see [Ni].

Example 3 (Sphere) Let S2 be a sphere centered at the origin with radius

r in R3. Taking the inward normal vector field, the mean curvature

h = 1/r. In fact, both of the two principal curvatures are 1/r. Usually

the two parts of the sphere cut by a plane are called spherical caps,

which are also CMC surfaces.

Example 4 (Cylinder) X(u, v) = (r cos u, r sin u, v). It is a rotational sur-

face of a straight line. The two principal curvatures are 0 and 1/r. So

h = 1
2r

. Here the Gauss curvature K ≡ 0.

Except for the minimal surfaces, the above examples are very simple.

However there is a class of CMC surfaces like the cylinder which are rotational

surfaces. Delaunay determined all such surfaces in 1841. We call rotational

CMC surfaces Delaunay surfaces.

Let C : (x(s), y(s)) be the smooth curve in the plane of z = 0 in R3

parametrized by the arc length s. The rotational surface X generated by C
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around the x-axis is

X(s, θ) = (x(s), y(s) cos θ, y(s) sin θ), 0 ≤ θ ≤ 2π

We give Delaunay’s result below (for a proof see [Ke]).

Theorem 1.1 For any real numbers b and h, there exists one-parameter

family of rotational surfaces X(s, θ; h, b) that are CMC h-surfaces. Here the

generating curves C can be written as

C(s; h, b) :=

(∫ s

0

1 + b sin 2ht√
1 + b2 + 2b sin 2ht

dt,
1

2|h|
√

1 + b2 + 2b sin 2hs

)
(11)

In 1984, H. Wente discovered an immersion CMC torus in R3. It has

inspired lots of examples by using different techniques.(see [We] and [Ke] for

more details.)

We conclude this section with an interesting fact[Ke].

Theorem 1.2 Let X(u, v) = (u, v, f(u, v)) be a map on the open disk BR(0)

on the uv-plane. If |h| ≥ a > 0 on BR(0) for some constant a, then

R ≤ 1

a

1.2 Stability and variation formulas

From the point of view of calculus of variations, constant mean curvature

surfaces are critical points of certain area functionals. R.Schoen’s work[Sc]

established curvature estimates for stable minimal surfaces. But stability

of CMC surfaces is a little different from the minimal surface case. We

investigate the stability following Barbosa and do Carmo([BaCa]).
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Let Σ be an immersed surface in a three manifold M with trivial normal

bundle.

Definition 1.1 A variation of Σ is a differential map F : Σ× (−ε, ε) → M

such that

Σt(·) = F (·, t) is an immersion for each t, Σ0 = Σ, and ∂(Σt) = ∂Σ.

We define the area functional by Area(t) =
∫
Σ dΣt where dΣt is the area

element of Σ in the metric induced by Σt.

The vector field ∂F
∂t

restricted on Σ is often called the variation vector

field. Let −→n be the normal vector field, we denote the normal component

of ∂F
∂t

by f = 〈∂F
∂t

,−→n 〉. We obtain the two variation formulas by direct

computation.

Proposition 1.1 (First variation formula) dArea(t)
dt

(0) = −
∫
Σ 2hfdΣ.

Proposition 1.2 (Second variation formula) For the critical points,

d2Area(t)

dt2
(0) = −

∫
Σ
(f4f + (|A|2 + Ric(−→n ,−→n ))f 2)dΣ,

where 4Σ is the Laplacian, |A|2 is the square norm of the second fundamental

form and Ric is the Ricci tensor of M .

When h ≡ 0, the minimal surfaces are the critical points of the area

functional. Stable minimal surfaces are the points such that Area′′(t) ≥ 0.

These include area-minimizing surfaces. In particular, minimal graphs are

area-minimizing.
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When h 6= 0, CMC surfaces are not critical points for all variations.

But they are critical points for all volume-preserving variations, which are

variations such that
∫
Σ fdΣ = 0. We denote the set of such variations by F .

Now we could define that (weakly) stable CMC surfaces are the points

such that Area′′(t) ≥ 0 for all volume-preserving variations.

However, when applying the stability condition, general variations are

more easy to use. So we define that strongly stable CMC surfaces are the

points such that Area′′(t) ≥ 0 for all variations. Throughout this thesis, we

work on strongly stable CMC surfaces.

For (strongly) stable CMC surfaces, we define the stability operator

L = 4+ |A|2 + Ric(−→n ,−→n ). (12)

We state two useful propositions.

Proposition 1.3 Σ is strongly stable if and only if -
∫
Σ f · Lf ≥ 0 for all

f ∈ C∞
0 (Σ).

Proposition 1.4 (Stability inequality) for all f ∈ C∞
0 (Σ),

∫
Σ
(inf

M
RicM + |A|2)f 2 ≤

∫
Σ
|∇f |2. (13)

The relationship between weak stability and strong stability can be ex-

plained by the Morse index.

Definition 1.2 Morse index is the number of negative eigenvalues of the

stability operator L acting on smooth functions.
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Strong stability implies that the Morse index is 0. By the study of Barbosa

and Bérard[BaBe], weak stability implies that the Morse index is 1 or 0.

At the end of the section, we shall give a very useful argument for stability

from Fischer-Colbrie and Schoen[FiSc].

Theorem 1.3 Let L be the stability operator. −L ≥ 0 on C∞
0 (Σ) if and only

if there exists a function u such that u > 0 and Lu = 0 on Σ.

1.3 Surfaces in space forms

In this section we describe the curvature estimate for CMC surfaces in a

space form. J.Spruck[Sp] established this for graphs when the ambient space

is R3 by using PDE methods. When the ambient three manifold is a space

form, i.e. the constant curvature space, the curvature estimate was given by

P. Bérard and L. Hauswirth [BeHa].

Their work was inspired by R.Schoen[Sc]. Because of the length of their

proof, we only give a short description here.

Sobolev inequality

(∫
Σ

f 2
)1/2

≤ AΣ

(∫
Σ
|∇f |2 +

∫
Σ

BΣf
)

. (14)

Here the constant AΣ and the non-negative function BΣ are depending

on the geometry of the surface. The Sobolev inequality holds in many

situations. For stable surfaces, we have the stability inequality (13).

12



Simons’ inequality 4(|A0|2 + v) ≥ −f(|A0|2 + v).

It holds for CMC surfaces in space forms. Here v and f are some

functions.

de Giorgi-Moser iteration :

Suppose that the surface satisfies some Sobolev inequality and the area

estimate Area(BR) ≤ c1R
2, and also there exists a nonnegative func-

tion u such that 4u ≥ −fu. Moreover in the ball B3R/4, u and f

satisfied integral estimates:

• there exists some q ≥ 6,(∫
B(3R/4)

u2q

)1/q

≤ c2R
−2+2/q;

• for all 0 ≤ a ≤ 1/2,

∫
B(3R/4)

(f + B2
Σ)1+a

+ ≤ c3R
−2a.

Then we have the point-wise estimate on BR/2,

sup
BR/2

u2 ≤ cq2R−2.

The idea is that we choose a series of the indices(q) to get a series of

integral inequalities, then take the limit to obtain the point-wise esti-

mate. To show the existence of the limit, we use the Sobolev inequality

and some nice cutoff functions.

Now we can state their main result.
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Theorem 1.4 (Theorem 4.1, [BeHa]) Let Σ be an oriented Riemannian sur-

face. Let i : Σ → M(c) be an immersed CMC h-surface into a simply-

connected three manifold M with constant curvature c. For any geodesic ball

BR(x0) where stability operator L is non-positive, given Λ > 0, there exists a

constant C(Λ), which depends on Λ, such that

|A0|2(x0) ≤ C(Λ)R−2 and |K(x0)| ≤ C(Λ)R−2, (15)

under one of the following conditions:

(A) c + H2 ≤ 0 and 4R2(c + H2)− ≤ Λ

or

(B) c + H2 > 0 and 4R2(c + H2) ≤ π2

In their paper[BeHa], since the Simons’ inequality and the Sobolev in-

equality hold, they only need to prove estimates for
∫
|A|2(total curvature)

and the area. But even in space forms, they have to prove estimates in two

cases, which depend on the curvature c of the space and the mean curvature

h. For each case it is a long way before some nice-chosen cutoff functions

yield estimates. If we study the surface in a general manifold. There is no

way we could decide all cases. Moreover the work to plug in different cutoff

functions is considerable.

From the next section, we shall give our approach to this problem.
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2 Tools of curvature estimates

2.1 Simons’ inequality

J. Simons [Si] in 1968 obtained an identity for the Laplacian of the second

fundamental form of a minimal hyper-surface, which has led to a number of

inequalities in different settings. Here we shall give the Simons’ inequality

for CMC surfaces in a general three manifold.

Lemma 2.1

4Σ|A0|2 ≥ −2|A0|4 − 8|h||A0|3 − 2C2|A0|2 − 2C3|A0|, (16)

where C2 depends on h and the curvature of M , C3 depends on h, the cur-

vature of M and its covariant derivative.

Proof. First, we choose {Ei, i = 1, 2, 3} as a locally defined orthonormal

frame in a neighborhood of some x in Σ, such that E3 is normal to Σ. For

the second fundamental form A , we define the symmetric two-tensor b on Σ

by

b(X, Y ) = g(A(X, Y ), E3) = −g(∇XE3, Y ), (17)

and set bi,j = −g(∇Ei
E3, Ej). Moreover we need to define another symmetric

two-tensor, a(X, Y ) = b(X, Y ) − hg(X, Y ). It is easy to see it corresponds

to the traceless second fundamental form A0 and

aij = bij − hδj
i , (18)

where δj
i = 1 if i = j, δj

i = 0 if i 6= j.
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Then we compute covariant derivatives of the tensor a to give aij,k and

aij,kl. Following the computation in [CM2] (Lemma 2.1, page 26), we obtain:

Proposition 2.1 aij,k = aik,j + R3ijk,

Proposition 2.2 aij,kl = aij,lk +
∑m=2

m=1 Rklimamj +
∑m=2

m=1 Rkljmami.

Also by the Gauss equation, we have

Rijkl = Rijkl + bjkbil − bikbjl. (19)

In particular, we plug (18) and (19) into Proposition 2.2 to obtain

aik,jk = aik,kj +
∑
m

Rjkimamk +
∑
m

Rjkkmami

+
∑
m

(akiajm − ajiakm + P1)amk

+
∑
m

(akkajm − ajkakm + P2)ami, (20)

where

P1 = h2(δi
kδ

m
j − δi

jδ
m
k ) + h(δi

kajm + δm
j aki − δi

jakm − δm
k aij),

and

P2 = h2(δk
kδ

m
j − δk

j δ
m
k ) + h(δk

kajm + δm
j akk − δk

j akm − δm
k ajk).

Now we can compute

4Σ|A0|2 = 4Σ

∑
i,j

a2
ij

= 2
∑
i,j

aij4Σaij + 2
∑
i,j

|∇Σaij|2
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= 2
∑
i,j,k

aijaij,kk + 2
∑
i,j,k

a2
ij,k

= 2
∑
i,j,k

aij

{
aik,jk + (R3ijk)k

}
+ 2

∑
i,j,k

a2
ij,k ( by Prop. 2.1)

= 2
∑
i,j,k

aij

{
aik,kj +

∑
m

Rjkimamk +
∑
m

Rjkkmami

+
∑
m

(akiajm − ajiakm + P1)amk

+
∑
m

(akkajm − ajkakm + P2)ami

}
+2

∑
i,j,k

aij(R3ijk)k + 2
∑
i,j,k

a2
ij,k (by (20))

= 2
∑
i,j,k

aij

{
akk,ij + (R3kik)j +

∑
m

Rjkimamk +
∑
m

Rjkkmami

+
∑
m

(akiajm − ajiakm + P1)amk

+
∑
m

(akkajm − ajkakm + P2)ami

}
+2

∑
i,j,k

aij(R3ijk)k + 2
∑
i,j,k

a2
ij,k (by Prop. 2.1). (21)

From here we are going to estimate the righthand side of (21).

First we estimate the terms of the form (R3ijk)l. We denote the covari-

ant derivative of Rijkm, as a curvature tensor in M , by Rijkm:l. Then by

restricting to Σ, we obtain (see [ScSimY],page 278)

Proposition 2.3 R3ijk:l = (R3ijk)l −R3i3kbjl −R3ij3bkl +
∑

m bmlRmijk.

Note that all computations occur in the neighborhood of x on the CMC

h-surface. We have

∣∣∣Rijkl

∣∣∣ < c1 and
∣∣∣∇Rijkl

2
∣∣∣ = ∑

i,j,k,m,l

Rijkm:l
2

< c2
2. (22)
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Also on the constant mean curvature surface, we have

∑
i

aii =
∑

i

bii − 2h = 0. (23)

By using Proposition 2.3, (22),(23) and the Cauchy inequality, after a

short computation, we obtain the estimate:

2
∑
i,j,k

aij

{
(R3kik)j + (R3ijk)k

}
= 2

∑
i,j,k

aij

{
(R3kik:j + R3ijk:k) + R3k3kbij + R3ij3bkk

}
−2

∑
i,j,k,m

Rmkikaijbmj − 2
∑

i,j,k,m

Rmijkaijbmk

≥ −4c2|A0| − 28|h|c1|A0| − 16c1|A0|2. (24)

We plug (24) into (21) and use elementary inequalities to obtain

4Σ|A0|2

≥ 0− 2
∑
i,j,k

ai,j

{
(R3kik)j + (R3ijk)k

}
−2

∑
i,j,k,m

c1|aijamk + aijami|

−2
∑

i,j,k,m

(
a2

ija
2
km + |aijamkP1 + aijamiP2|

)
+ 2

∑
i,j,k

a2
ij,k

≥ 0− 4c2|A0| − 28|h|c1|A0| − 16c1|A0|2

−4c1|A0|2 − 2|A0|4 − 8h2|A0|2 − 8|h||A0|3

≥ −2|A0|4 − 8|h||A0|3 − 2(10c1 + 4h2)|A0|2 − 2(2c2 + 14|h|c1)|A0|

≥ −2|A0|4 − 8|h||A0|3 − 2C2|A0|2 − 2C3|A0|,

where C2 = 10c1 + 4h2 and C3 = 2c2 + 14|h|c1. Q.E.D.

Remark 2.1 When Σ is a minimal surface in R3 ( or a CMC surface in a

space form), Simon’s inequalities have been obtained in [Si]( or [BeHa]).
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2.2 Mean value inequality

In this section, we give a local version of the mean value inequality obtained

by Schoen and Yau.

Theorem 2.1 (Theorem 6.2 in [ScY],p77) Let Σ is a complete Riemannian

manifold with Ric(Σ) ≥ −K. Let u be a non-negative subharmonic function

on Σ. Then for any τ ∈ (0, 1/2) and R > 0 we have

sup
B((1−τ)R)

u2 ≤ c1τ
−c2(1+

√
KR)

∫
BR

u2

V ol(BR)
. (25)

For a CMC h-surface Σ in a complete three dimensional manifold M with

|KM | ≤ k2, we have a mean value inequality in a disk.

Proposition 2.4 Let x0 ∈ Σ, 0 < R < π
|h| and the geodesic ball BR(x0) ∩

∂Σ = ∅. If f is a nonnegative function on Σ with 4Σf ≥ −R−2f , then

f 2(x0) ≤
C4

V ol(BR(x0))

∫
BR(x0)

f 2,

where C4 is a constant depending on k and h.

Proof. Let N = Σ× [−R, R], we define a function g(x, t) = f(x)et/R. Then

4N g(x, t) = et/R4Σf + et/RR−2f ≥ 0.

Also by the Gauss Equation,

KΣ ≥ KM − 2h2 ≥ −(k2 + 2h2).

19



In the product space N , we have RicN ≥ KΣ ≥ −K, where K = k2 + 2h2.

Then for a nonnegative subharmonic function g on such a manifold, we use

Theorem 2.1 to obtain

g2(x, t) ≤ c1e
c2(1+

√
KR)

∫
BR(x,t)⊂N g2

V ol(BR(x, t))
, (26)

where c1 and c2 are positive constants.

Now we set x = x0 and t = 0, then use R < π/|h| to obtain

f 2(x0) = g2(x0, 0) ≤ c

∫
BR(x0,0)⊂N f 2

V ol(BR(x0, 0))
.

By using

{BR(x0, 0) ⊂ N} ⊆ {BR(x0) ⊂ Σ} × [−R,R],

and

{BR(x0, 0) ⊂ N} ⊇ {BR
2
(x0) ⊂ Σ} × [−R/2, R/2],

we obtain

f 2(x0) ≤ ce2
R
∫
BR(x0)⊂Σ f 2

R · V ol(BR
2
(x0))

.

Moreover, by the Bishop volume comparison theorem, we have

V ol(Σ, BR/2)

V (K, R/2)
≥ V ol(Σ, BR)

V (K, R)
.

Here V (K, R) is the volume of the geodesic ball BR in the space form with

constant sectional curvature K.

At last, we have

f 2(x0) ≤
C4

V ol(BR(x0))

∫
BR(x0)

f 2.

Q.E.D.
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Remark 2.2 In the minimal surface theory, the mean value inequality is a

key tool. Here we can only have a local version because the mean curvature

h restricts the radius of the disk as is stated in Theorem 1.2.

2.3 Estimate of elliptic integrands

T. Colding and W. Minicozzi II showed that the nonnegativity of certain

Schrödinger operators on a surface implied certain upper bounds on intrinsic

balls [CM1]. This result played a key role in their study of embedded minimal

surfaces in R3. It was new and useful because it applied to general surfaces.

In particular, the stability operator is such a Schrödinger operator. We

can obtain estimates for area and total curvature on general stable surfaces

without a priori bounds. We are going to use their result to obtain our

estimates for CMC surfaces in §3.1.

Now we prove a Theorem in [CM1].

Theorem 2.2 ([CM1], Thm2.1) For any intrinsic ball BR = BR(x) in Σ2,

where BR(x) ∩ Cutlocus(x) = ∅ and BR ∩ ∂Σ = ∅. Let κ ≥ 0 be a constant.

And let ν, ω ≥ 0 be functions. For some differential operator L1, L2 on Σ,

if −L1 = −4Σ − ν + 3κ + c1KΣ ≥ 0, then

R−2Area(BR) +
c2

2πc1

∫
BR

ν(1− s

R
)2ds ≤ c2, (27)

and if −L2 = −4Σ − ω + 2κ ≥ 0, then for all 0 < µ < 1∫
Bµ2R

ω ≤ c2(log µ)−2 − 2c2/ log µ + 2κc2R
2µ2, (28)

where c1 > (1 + 3κR2)/2, c2 = 2πc1/(2c1 − 1− 3κR2).
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Proof. Let l(s) be the length of ∂Bs(x0) and K(s) =
∫
Bs

KΣ.

By the Gauss-Bonnet theorem,

l′(s) =
∫

∂Bs

kg(s)ds = 2πχ(Bs)−K(s) = 2π −K(s). (29)

We can choose a cut-off function f = η(s) such that η : [0, R] → R+ is

smooth and satisfies η(0) = 1, η(R) = 0, η′ ≤ 0.

Using the nonnegativity of L1 and coarea formula, we have

0 ≤ −
∫

BR

fL(f) =
∫

BR

(
|∇f |2 − f 2ν + 3κf2 + c1f

2KΣ

)
∫

BR

νf 2 ≤
∫

BR

|∇f |2 + 3κ
∫

BR

f 2 + c1

∫
BR

f 2KΣ

=
∫ s=R

s=0
(η′)2l(s) + 3κ

∫ s=R

s=0
η2l(s) + c1

∫ s=R

s=0
η2
∫

∂Bs

KΣ. (30)

Using (29) and integrating by parts, we obtain

∫ s=R

s=0
η2
∫

∂BR

KΣ =
∫ s=R

s=0
η2K ′(s) = −

∫ s=R

s=0
(η2)′K(s)

=
∫ s=R

s=0
(η2)′(l′(s)− 2π).

Now choose η(s) = 1− s/R, so (η′)2 = 1
R2 and (η2)′ = 2(s−R)

R2 .

We plug them into (30) to obtain

∫
BR

νf 2 ≤ R−2
∫ s=R

s=0
l(s) + 3κ

∫ s=R

s=0
l(s) + c1

∫ s=R

s=0
(η2)′(l′(s)− 2π)∫

BR

νf 2 + 2c1R
−1
∫ s=R

s=0
(1− s

R
)l′(s) ≤ (R−2 + 3κ)

∫ R

s=0
l(s) + 2πc1

Integrating by parts again,

∫
BR

ν(1− s/R)2 + 2c1R
−2
∫ s=R

s=0
l(s) ≤ (R−2 + 3κ)

∫ s=R

s=0
l(s) + 2πc1. (31)
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By the coarea formula we have Area(BR) =
∫ s=R
s=0 l(s). Substituting it in

(31) and after simplifying, we obtain (27).

To show (28) we define the cutoff function f = η(s) on [0, R] by

η(s) =


1 : 0 ≤ s ≤ µ2R

log(sR−1)
log µ

− 1 : µ2R < s ≤ µR

0 : µR < s ≤ R

(0 < µ < 1) (32)

Substituting (32) into an analogous inequality of (30),

∫
Bµ2R

ω ≤
∫

Bµ2R

ωf2 ≤
∫ s=R

s=0
(η′)2l(s) + 2κ

∫ s=R

s=0
η2l(s)

≤ (log µ)2
∫ s=µR

s=µ2R
l(s)s−2 + 2κ

∫ s=µR

s=0
l(s).

Using (27) and integrating by parts twice, we obtain (28)

∫
Bµ2R

ω ≤ (log µ)−2
[
Area(Bs)s

−2
]µR

µ2R

+2(log µ)−2
∫ s=µR

s=µ2R
s−3Area(Bs) + 2κc2R

2µ2

≤ c2(log µ)−2 − 2c2

log µ
+ 2κc2R

2µ2.

Q.E.D.

Remark 2.3 Because of the choices of cutoff functions in the proof, we have

to use strong stability in our estimates in §3.1.

Remark 2.4 Recently we learned from H. Rosenberg that the condition BR∩

Cutlocus(x) = ∅ can be relaxed in the above proof, which means we can choose

a large ball for our curvature estimates later.
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3 Main result

3.1 Area and total curvature estimates

We will see in §3.2 that small total curvature implies curvature estimates,

which is similar to the minimal surface case. Here we show area and total

curvature estimates by using the estimates for elliptic integrands in §2.3.

Theorem 3.1 Let Σ be a strongly stable immersed CMC h-surface with triv-

ial normal bundle in a three manifold M , where |KM | ≤ k2. If BR(x) ⊂ Σ,

BR(x)∩ ∂Σ = ∅ and BR(x)∩Cutlocus(x) = ∅ , then for any R < 1√
6(h2+k2)

,

Area(BR(x)) ≤ 4πR2 (33)

and for 0 < µ < 1/e∫
Bµ2R(x)

|A0|2 ≤ −12π(logµ)−1 +
4

3
πµ2 (34)

Proof. For a stable constant mean curvature h-surface Σ in M , the Gauss

equation is

KΣ = KM − 1

2
|A|2 + 2h2 = KM − 1

2
|A0|2 + h2 (35)

As in (12), the stability operator is L = 4Σ + |A|2 + RicM(n, n).

Rewrite it as

−L2 = −4Σ − |A0|2 − (4h2 + RicM(n, n) + 2k2) + 2k2 + 2h2

and

−L1 = −4Σ−
1

2
|A0|2−(3h2+RicM(n, n)+KM +3k2+3h2)+3(k2+h2)+KΣ.
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Now we can use(27) and (28) in Theorem 2.2, where c1 = 1, ω ≥ |A0|2,ν >

0 and κ = h2 + k2. Moreover, by choosing R < 1√
6(h2+k2)

such that c2 < 4π,

we obtain (33)

Area(BR) ≤ 4πR2.

Also take µ < 1/e and use c2 < 4π, we obtain (34)

∫
Bµ2R

|A0|2 ≤ −12π(logµ)−1 +
4

3
πµ2.

Q.E.D.

3.2 Curvature estimates

Choi and Schoen[ChSc] proved that small total curvature yields a curvature

estimate for minimal surfaces in a three manifold M with |KM | ≤ k2. We

will use a similar argument to give curvature estimates for CMC surfaces.

Throughout this subsection, we restrict our investigation to a geodesic

ball Bλ(x) of the CMC h-surface. Here the constant λ can be chosen as

π√
6(h2+k2)

as we need in Theorem 0.1 and Theorem 3.1.

First we obtain a local version of Simons’ inequality (Lemma 2.1).

Lemma 3.1 For any geodesic ball Br(x) ⊂ Bλ(x), if sup |A0| < 1
r
, then

4Σ|A0|2 ≥ −C6r
−2(|A0|2 + C5),

where C5 depends on λ, h, the curvature tensor of M and its covariant deriva-

tive, C6 depends on λ and h.

25



Proof.

We just plug |A0| < 1
r

and r < λ into Lemma 2.1 to obtain

4Σ|A0|2 ≥ −2C2|A0|2 − 2|A0|4 − 8|h||A0|3 − 2C3|A0|

≥ −2|A0|2
(
|A0|2 + C2

)
− 8|h||A0|

(
|A0|2 +

C3

2|h|

)
≥ −2r−2

(
|A0|2 + C5

)
− 8|h|r−1

(
|A0|2 + C5

)
≥ −2r−2

(
|A0|2 + C5

)
(1 + 4|h|r)

≥ −C6r
−2
(
|A0|2 + C5

)
,

where C5 = max(C2,
C3

2|h|) and C6 = 2(1 + 4|h|λ). Q.E.D.

Then we give a lower bound for the volume of Br(x), which is a simple

corollary of the Rauch Comparison theorem.

Proposition 3.1 On the CMC h-surface Σ in M with KM ≤ k2, if a

geodesic ball Br(x) ∩ Cutlocus(x) = ∅, then V ol(Br(x)) ≥ 8
π
r2.

Proof. By the Gauss equation (35),

KΣ = KM − 1

2
|A|2 + 2h2 ≤ k2 + 2h2 = K.

Using the Rauch Comparison theorem, we have

V ol(Br) ≥ V olK(Br).

Here V olK(Br) is the volume of a geodesic ball Br in the space form with

constant sectional curvature K. We will use the sphere with radius 1√
K

in

R3 as the model.
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Now from [ScY] Proposition 4.3 on pape 49, we know V olK(Br)/r
2 is

a non-increasing function about r. Since Br(x) ∩ Cutlocus(x) = ∅, on the

sphere we have r < π
2
√

K
. Thus we have

V olK(Br)/r
2 ≥

V olK
(
B π

2
√

K

)
π2/4K

=
2π/K

π2/4K
=

8

π
.

The result follows.

Q.E.D.

Finally we give the curvature estimate in Bλ(x).

Theorem 3.2 In a geodesic ball Bλ(x) ⊂ Σ\∂Σ, where Bλ(x)∩Cutlocus(x) =

∅, if for all ε, there exists R < min(λ, ε), such that
∫
BR(x)

|A0(x)|2 ≤ ε, then

there exists 0 < r0 < λ, for all 0 < σ ≤ r0, we have

supBr0−σ |A0(x)|2 ≤ σ−2. (36)

Here r0 depends on h, the curvature tensor of M and its covariant derivative.

Proof.

Let F (x) = (R − r(x))2|A0(x)|2, clearly F (x) ≥ 0 and it achieves its

maximum at some point x0 on BR. If F (x0) < 1, it is easy to see |A0|2 ≤ σ−2

for |x| ≤ R− σ, so that (36) holds.

If F (x0) ≥ 1, choose 2σ < R−r(x0) such that 4σ2|A0|2(x0) = 1. We have

sup
Bσ(x0)

σ2|A0|2 = sup
Bσ(x0)

σ2 F (x)

(R− r(x))2

≤ 4σ2

(R− r(x0))2
sup
Bσ

F (x)

≤ 4σ2

(R− r(x0))2
F (x0) = 1,

27



that is

sup
Bσ(x0)

|A0|2 ≤ σ−2. (37)

Now using Lemma 3.1 in the ball Bσ, we have

4Σ|A0|2 ≥ −C6σ
−2(|A0|2 + C5).

Let µ = |A0|2 + C5, we have

4Σµ ≥ −C6σ
−2µ.

Then by using a little different form of the mean value inequality of Propo-

sition 2.4, we obtain

µ2(x0) ≤ C4

V ol(Bσ(x0))

∫
Bσ(x0)

µ2. (38)

With Bλ(x0) ∩ Cutlocus(x0) = ∅ and σ ≤ λ, we can get a lower bound

for V ol(Bσ) by Proposition (3.1):

V ol(Bσ(x0)) ≥
8

π
σ2. (39)

We combine (37)-(39), and area estimate (33) in Theorem 2.2 to give

|A0|4(x0) ≤ C4

V ol(Bσ(x0))

∫
Bσ(x0)

(|A0|2 + C5)
2dν

≤ C4
π

8
σ−2

∫
Bσ(x0)

(|A0|2 + C5)(σ
−2 + C5)dν

≤ c∗σ
−4
∫

Bσ(x0)
(|A0|2 + C5)dν

≤ c∗σ
−4

(∫
Bσ(x0)

|A0|2dν + C5V ol(Bσ)

)

≤ c∗σ
−4

(∫
Bσ(x0)

|A0|2dν + C54πσ2

)
(by (33)).
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Now plug in |A0|2(x0) = σ−2

4
and σ ≤ R ≤ ε, we have

σ−4

16
≤ c∗σ

−4(Cε + C54πε2) ≤ c∗σ
−4ε.

Choose ε small enough, we get a contradiction. Hence we prove (36).

Q.E.D.

Corollary 3.1 Under the same condition as in Theorem 3.2, we have

supBr0−σ |KΣ(x)| ≤ C1σ
−2, (40)

where r0 depends on h, the curvature tensor of M and its covariant derivative,

C1 is a constant depending on h and k.

Proof.

To show (40), notice that the Guass equation (35) yields

|KΣ| = |KM − 1

2
|A0|2 + h2| ≤ 1

2
|A0|2 + k2 + h2.

Using Theorem3.2 and σ < λ , we can get (40)

|KΣ| ≤ (1/2 + |h|2σ2 + k2σ2)σ−2 ≤ C1σ
−2.

Q.E.D.

3.3 Proof of the main theorem

Now we combine Theorem 3.1 and Theorem 3.2 to prove the main theorem.

Proof. We prove the theorem in two steps for the sake of simplicity.
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• Suppose that BR(x) is a topological disk. First we can show BR(x) ∩

Cutlocus(x) = ∅ if R < π√
(2h2+k2)

. In fact, by the Gauss equation

(35), we have KΣ ≤ k2 + 2h2. From the Rauch comparison theorem,

the conjugate locus is empty when R < π√
(2h2+k2)

. Thus for any point

p ∈ Cutlocus(x), there exist two minimal geodesics ι1, ι2, such that

ι1∩ι2 = x∪p. From the Gauss-Bonnet theorem, the loop is an essential

loop. Now we have an essential loop in the stable disk BR(x). This

is impossible. Then using BR(x) ∩ Cutlocus(x) = ∅, we can apply

Theorem 3.1 to get area and total curvature estimates for all topological

disks. Here we need to choose R < λ = π√
6(h2+k2)

. Then for any ε, we

can choose small µ, such that
∫
BR(x) |A0(x)|2 < ε, where R depends on

µ. Lastly applying Theorem 3.2, we obtain the curvature estimate.

• If BR(x) is not a topological disk, we will look at the universal covering

of BR, which is a topological disk. Since BR is stable, the stability

operator −L is nonnegative on BR. From Theorem 1.3 [FiSc](see also

[CM1] Lemma 1.26), there exists some positive function f with Lf = 0.

That means the pullback of −L is also nonnegative, so we obtain a

stable topological disk on the covering. Now we repeat the above proof

to give the curvature estimate for the covering disk. The curvature

estimate for BR follows.

Q.E.D.

Corollary 3.2 (J. Spruck[Sp],1974) If a CMC surface Σ is a graph in R3,

curvature estimates (4) and (5) hold.
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Proof. We only need to show Σ is strongly stable.

Suppose Σ is a graph over the plane z = 0. We can choose the unit vector

N = (0, 0, 1) and define a function f = g(N,−→n ), where g is the inner product

of R3 and −→n is the unit normal vector field on Σ. Since Σ is a graph, f is

positive.

Now we define a local orthonormal frame {E1, E2,−→n } in the neighborhood

of a point p. We can obtain

4Σf(p) =
∑

i

EiEig(N,−→n )(p) =
∑

i

g(N,∇Ei
∇Ei

−→n )(p)

= g(N,−→n )g(−→n ,
∑

i

∇Ei
∇Ei

−→n ) = −f(p) · |A|2(p)

From (12), the stability operator here is L = 4 + |A|2, thus we have

Lf = 0. Since f is positive, by Theorem 1.3, Σ is strongly stable.

The rest follows from the main theorem 0.1.

Q.E.D.

Remark 3.1 The curvature estimate for CMC surfaces in a space form

[BeHa] can be obtained from our main theorem with different constants.

Remark 3.2 In fact, without much change of our proof, we can show similar

curvature estimates (Theorem 0.1) when the stability operator L is bounded

from above by some non-negative constant 2l. A similar result has been proved

for CMC surfaces in a space form by P. Bérard and L. Hauswirth [BeHa].
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