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Chapter 1

Introduction

A central notion in geometric invariant theory (GIT) is the concept of stability. Sta-
bility plays a significant role in forming quotient spaces of projective varieties for
which geometric invariant theory was invented. One can define Mumford-Takemoto
slope stability for holomorphic vector bundles, and also there is a notion of Gieseker
stability which is more in the realm of geometric invariant theory. It is well-known
that over algebraic curves these different notions coincide.

On the other hand, in differential geometry, metrics with certain curvature prop-
erty have been interesting to mathematicians for years. One of the earliest examples
of such metrics are Einstein metrics. Einstein metrics are metrics which are propor-
tional to their Ricci curvature. Einstein introduced the concept of Einstein metrics
in order to formulate relativity theory. Later Yang and Mills introduce the Yang-
Mills equations which are the generalization of Maxwells equations. Solutions to
the Yang-Mills equations are connections over vector bundles which satisfy certain
curvature property. In the context of holomorphic vector bundles over Kéhler mani-
folds, the Yang-Mills equation corresponds to the Hermitian-Einstein equation which

is analogue of Einstein metrics in the setting of holomorphic vector bundles.



There is a close relationship between the concept of stability coming from the al-
gebraic geometric side and the existence of Hermitian-Einstein metrics. In 7, Seshadri
and Narasimhan prove that a holomorphic vector bundle over a compact Riemann
surface is poly-stable if and only if it admits a Hermitian-Einstein metric. The picture
becomes complete after the work of Donaldson, Uhlenbeck and Yau. They prove the

following which is known as the Hitchin-Kobayashi correspondence.

Theorem 1.0.1. (/D1],/D2],[UY]) Let (X, w) be a compact Kdhler manifold and E —
X be a holomorphic vector bundle. Then E is Mumford poly-stable if and only if E

admits a Hermitian-Einstein metric.

We recall the definition of Mumford slope stability. Let (X,w) be a compact
Kahler manifold of dimension n and £ — X be a holomorphic vector bundle of rank
r. We can define the slope of the bundle E by u(E) = deg(E)/r, where deg(E) =
[ c1(E) Aw™ . Notice that for n > 2, the slope depends on the cohomology class of
w as well as ¢;(E). A holomorphic vector bundle F is called Mumford (semi)stable if
for any coherent subsheaf F' of E with lower rank,(u(F) < u(E)) p(F) < p(E).

Beside the notion of Mumford slope stability, there is another notion of stability
introduced by Gieseker which is more in the realm of GIT. Let (X, L) be a polarized
algebraic manifold and E be a holomorphic vector bundle over X. The bundle F is

called Gieseker stable if for any proper coherent subsheaf F' of E

WX FeLy) WX Ee L)
rk(F) rk(E) ’

for k> 0. The recent work of X. Wang ([W1], [W2]) gives a geometric interpretation
of Gieseker stability. Wang proves that there is a relation between Gieseker poly-

stability and existence of so-called balanced metrics. This relation was conjectured

first by Donaldson in ([D5]).



The situation is more complicated in the case of polarized varieties. Canonical
metrics on polarized varieties have been studied for years. Some of the earliest work
was done by Calabi who introduced the notion of extremal metrics. He also proved
some uniqueness results and conjectured the existence of Kahler-Einstein metrics on
certain types of complex manifolds. The celebrated work of Yau solves the problem of
the existence of Kahler-Einstein metrics on compact complex manifolds with trivial
canonical class([Y1], [Y2]). Also, Aubin and Yau independently proved the existence
of Kéahler-Einstein metrics on compact complex manifolds with negative first chern
class ([A],[Y1], [Y2]). The case of positive chern class corresponds to manifolds with
negative canonical class which are called Fano manifolds. It is known that there are
obstructions to the existence of Kahler-Einstein metrics in this case. The first known
obstruction is due to Matsushima. He shows that if such a metric exists, then the Lie
algebra of holomorphic vector fields must be reductive. Another obstruction to the
existence of Kéahler-Einstein metrics is the Futaki invariant which is coming from holo-
morphic vector fields on the manifold. Tian proves that vanishing of Futaki invariants
on smooth Fano surfaces implies the existence of Kéahler-Einstein metrics([T1]). Later
in ([T2]), Tian constructs a three dimensional Fano manifold which has no nontrivial
holomorphic vector fields (hence vanishing Futaki invariant) and yet does not admit
any Kéhler-Einstein metric. He shows that this example does not satisfy the so-called
weak K-stability condition which is introduced by Tian in the same paper. Then he
conjectures that for Fano manifolds the weak K-stability is a necessary and sufficient
condition for the existence of Kahler-Einstein metrics.

Inspired by the Hitchin-Kobayashi correspondence, Yau conjectures that there
should be a similar correspondence in the case of polarized varieties. More precisely,
Yau conjectures that for any smooth Fano variety X, there is a relationship between

the existence of Kiithler-Einstein metrics and the stability of polarized variety (X, Ky')



in some GIT sense. Yau’s conjecture was generalized by Tian and Donaldson. They
develop the notion of K-stability for polarized varieties and conjecture that for a
polarized variety (X, L), the existence of constant scalar curvature Kéhler (cscK)
metrics in the class of 2w (L) is equivalent to the K-polystability of (X, L). In

([D3]), Donaldson proves the following

Theorem 1.0.2. Let (X, L) be a polarized variety. Assume that Aut(X,L)/C* is
discrete. If there exists a constant scalar curvature Kdahler metric ws in the class of
2mei (L), then (X, LF) admits a balanced metric for k > 0 and the sequence of rescaled

balanced metrics wy converges to we in the C'°°-norm.

By the earlier result of Zhang ([Zh]), we know that the Chow stability of (X, L) is
equivalent to the existence of balanced metrics on L. Therefore, Donaldson’s theorem
implies that asymptotically Chow stable is a necessary condition for the existence of
cscK metrics. In some sense, this basically proves one direction of Donaldson-Tian-

Yau’s conjecture.

1.1 Space of Fubini-Study metrics

Let X be a compact complex manifold of dimension n and L be a positive line bundle

over X. By Kodaira embedding theorem, for £ > 0 we get a sequence of embeddings
ue: X — P(H(X, LF)"),

such that (;O(1) = L*. Any hermitian inner product on H°(X, L¥) induces a Fubini-
Study metric on the line bundle O(1) and therefore on the line bundle L. We denote
the space of all such metrics on L by K.

Tian proved that any positive metric ¢ on L can be approximated by a sequence

of metrics gi, where gx € Kx. More precisely, he proved the following



Theorem 1.1.1. Let s = (s(()k),...,sgiz) be an orthonormal basis for H°(X, L¥)

with respect to the following hermitian inner product.

wy(z)"

(5,1) = /X (s(2), t(z)) or 2L

n!

Let gr, = X4y hrs, where 1w © X — PNk s the Kodaira embedding using the basis .

Then

(gk)%—>g as k — oo,

in C?- topology.
Later Ruan proved the convergence in C*°-topology. A major development re-
garding the behavior of the sequence g in the statement of the above theorem was

made by fundamental result of Catlin and Zelditch. They show the existence of a

complete asymptotic expansion for the sequence.

Theorem 1.1.2. With the notation of the above theorem, define

pr(9) () = D15 () v

Then there exist functions ag(x),ai(x,) ... which such that the following asymptotic

expansion holds in C*.

or(9)(x) ~ agk™ + a k™t 4.

S(wg)
2

Moreover, ag =1 and a; = , where S(w,) is the scalar curvature of w,.

The same result holds if we twist L* with a holomorphic vector bundle.

Mabuchi introduce a functional on the space of positive metrics on a an ample
line bundle L. This functional has the feature that if we restrict it to the space of
Fubini-Study metrics on LF, its critical points (if there is any) are exactly balanced

metrics. As it mentioned before, by a result of Zhang existence of balanced metric



on L is equivalent to the Chow stability of the polarized manifold (X, L). In the
case of holomorphic bundle E, there is a similar functional introduced by Donaldson.
If we restrict this functional to the space of Fubini-Study metrics on F, its critical
points are exactly balanced metrics. Again the existence of balanced metric on F
is equivalent to the stability of Gieseker point of E. In this thesis, we introduce a
functional F' on the space of positive metrics on E. We define that a metric h on
E is strongly balance if it is a critical point of the restriction of F' to the space of
Fubini-Study metrics on E. It is trivial that a strongly balanced metric on E is
balanced in the sense of Wang. Therefore the existence of strongly balanced metric
on F implies the stability of Gieseker point of E. We also find a GIT interpretation
for the restriction of F' to the space of Fubini-Study metrics on E (cf. Proposition

3.34. ).

1.2 Numerical algorithm to find balanced metrics

As it mentioned before, we can approximate the space of positive metrics on a line
bundle L by the space of Fubini-Study metrics on L coming from high power of L.
Every such a Fubini-Study metric corresponds to a hermitian inner product on the
space of global sections of some power of L. Fix a large integer k. We can define
a map FS from the space of hermitian inner products on H°(X, L¥) to the space of
positive metrics on L* using Kodaira embedding. On the other, any positive metric
on L* induces an L?- inner product on the space of sections which we call it Hilb.
Therefore, we obtain a map 17" = Hilb o F'S from the space of hermitian inner product
on H°(X, L¥) to itself. It is easy to see that balanced metrics are correspond to fixed
points of T. Starting with a hermitian inner product H on H°(X, L¥), if the sequence

{T'(H)} converges, then the limit must be a fixed point of 7" and therefore a balnced



metric. Donaldson mentions that if there exists a unique balanced metric on L* to
a constant, then the sequence {T'(H)} converges ([D6]). In [Sa], Sano proves the

following.

Theorem 1.2.1. Suppose that Aut(X,L)/C* is discrete. If L admits a balanced

metric, then the sequence {T'(H)} converges as | — oo.

Notice that the discreteness of Aut(X,L)/C* implies that the balance metric is
unique up to a constant if it exists.

The same picture holds for holomorphic vector bundles. The following is conjec-

tured by Douglas, et. al. in [DKLR].

Theorem 1.2.2. Suppose that E is simple and admits a balanced metric. Then for
any Hy € Mg, the sequence T"(Hy) converges to Hy,, where Hy, is a balanced metric

on F.

1.3 Chow stability of ruled manifolds

Prior to the developments discussed in the begining, in ([M]), Morrison proved that
for a rank two vector bundle over a compact Riemann surface, slope stability of the
bundle is equivalent to the Chow stability of the corresponding ruled surface with
respect to certain polarizations.

One of the earliest results in this spirit is the work of Burns and De Bartolomeis
in [BD]. They construct a ruled surface which does not admit any extremal metric
in a certain cohomology class. In [H1], Hong proves that there are constant scalar
curvature Kéahler metrics on the projectivization of stable bundles over curves. In [H2]
and [H3], he generalizes this result to higher dimensions with some extra assumptions.
Combining Hong’s results with Donaldson’s, one can see that (PE*, Opg: (1)) is Chow

stable for m,n > 0 when the bundle FE is poly-stable and the base manifolds admits



a constant scalar curvature Kahler metric. Note that it concerns with Chow stability
of (PE*Opg: (n)) for n big enough.

In [RT], Ross and Thomas develop the notion of slope stability for polarized
algebraic manifolds. As one of the applications of their theory, they prove that if
(PE*, Opp+(1) @ m*LF) is slope semi-stable for k > 0, then E is a slope semi-stable
bundle and (X, L) is a slope semi-stable manifold. For the case of one dimensional
base of genus g > 1, they show stronger results. In this case they prove that if
(PE*, Opg-(1) @ 7*LF) is slope (semi, poly) stable for some k, then E is a slope (semi,
poly) stable bundle.

In this thesis, We generalize one direction of Morrison’s result to higher rank vector
bundles over compact algebraic manifolds. Let (X,w) be a compact Kéhler manifold
of dimension n and L — X be a polarization for X such that w € 2w (L). Let
E — X be a holomorphic vector bundle over X and 7 : PE* — X be the projection

map. We have proven the following in Section 5.6.

Theorem 1.3.1. ( [S2]) Suppose that Aut(X) is discrete. If E is Mumford slope
stable and X admits a constant scalar curvature Kdhler metric in the class of 2mey (L),
then

(PE*, Opp-(1) @ 7 LF)
is Chow stable for k > 0.

Since Chow stability is equivalent to the existence of balanced metrics, in order to
prove Theorem 1.3.1, it suffices to show that (PE*, Opg-(1) ® 7*L*) admits balanced
metrics for k> 0. The strategy of the proof is as follows:

First we show that there exists an asymptotic expansion for the Bergman kernel
of (PE*, Opp+(1) ® 7*L*)(Theorem 1.3.2). Let o be a positive hermitian metric on L

such that Ric(o) = w. For any hermitian metric g on Opg-(1), we define the volume



form dp, 1 as follows

*, \n+r—1 n n+r—1—j *, 1]
oy = K (wg + km*w) B in Wy W
g,k — - § : (

A
(n+7r—1)! n+r—j! J!

where w, = Ric(g). We prove the following in Section 5.4.

Theorem 1.3.2. ( [S2/) Let h be a hermitian metric on E and g be the Fubini-
Study metric on Opp«(1) induced by the hermitian metric h. Then there exist smooth

endomorphisms A; € I'(X, E) such that
ou(0,)([2]) ~ CTr(A(w, BY(E" + Ak 4 ).

where pi(g,w) is the Bergman kernel of H*(PE*, Opp-(1) ® 7* L*) with respect to the
L?-inner product L*(g®o®*, dpir,g), Cy is a positive constant depends only on the rank

of the vector bundle E and \(v, h) = WU@U*’I 1s an endomorphism of EI. Moreover
h

i i (r+1)
A = —AF, — —tr(AF, I
! 27 (B;h) 2rr r( (E’h)) Bt 2r

S(w)lE,

where A is the trace operator acting on (1,1)-forms with respect to the Kdhler form

w.

Finding balanced metrics on Opg«(1) ® 7*LF is basically the same as finding solu-
tions to the equations pg(g,w) = Constant. Therefore in order to prove Theorem 1.3.1,
we need to solve the equations py(g,w) = Constant for k£ > 0. Now if w has constant
scalar curvature and h satisfies the Hermitian-Einstein equation A Fipp = pulg,
then A;(h,w) is constant. Notice that in order to make A; constant, existence of
Hermitian-Einstein is not enough. We need the existence of constant scalar curva-
ture Kéhler metric as well. The crucial fact is that the linearization of A; at (h,w)
is surjective. This enables us to construct formal solutions as power series in k'

for the equation pi(g,w) = Constant. Therefore, for any positive integer ¢, we can



construct a sequence of metrics g, on Opg+ (1) ® 7*LF and bases s* = (s{*¥ )

for HY(PE*, Opg-(1)) such that

Z lsgk) 2 = Constant,

9k
/ (sgk),sg-k))gkdvolgk = DI + M,
PE*

where Dy, — 1 as k — oo, and M, is a trace-free hermitian matrix such that || Mg||op, =
o(k~% 1) as k — oo for big enough positive constant q.

Now the next step is to perturb these almost balanced metrics to get balanced
metrics. As pointed out by Donaldson, the problem of finding balanced metric can
be viewed also as a finite dimensional moment map problem solving the equation
M;. = 0. Indeed, Donaldson shows that M, is the value of a moment map pp on the
space of ordered bases with the obvious action of SU(N). Now, the problem is to
show that if for some ordered basis s, the value of moment map is very small, then
we can find a basis at which moment map is zero. The standard technique is flowing
down s under the gradient flow of |up|* to reach a zero of up. We need a lower bound
for dup to guarantee that the flow converges to a zero of the moment map. We do

this by adapting Phong-Sturm proof to our situation ([PS2]).

1.4 Outline

In the second chapter, we give some background in Kéahler geometry and geometric
invariant theory. Also, we define and state basic facts about balanced metrics. In
the third chapter, we construct a functional on the space of Fubini-Study metrics
on a very ample holomorphic vector bundle. We show that this functional is convex
along geodesics. We give GIT interpretation of this functional. In Chapter 4, we
define a discrete dynamical system in the space of Fubini-Study metrics on a very

ample holomorphic vector bundle and prove the convergence of the dynamical system

10



under the assumption of stability of the Gieseker point of the bundle and simplicity
of the bundle. In Chapter 5, we study projectivization of vector bundle. The main
result of this chapter is Theorem 1.3.1 which gives a sufficient condition for stability
of projectivization with respect to certain polarizations. There are two main steps
for the proof of Theorem 1.3.1. The first step is constructing almost balanced metrics
on the projectivization. In order to construct such metrics, we show an asymptotic
expansions for the Bergman kernel of metrics on the projectivization which come
from the bundle. It is done in Section 5.4. The second step is to perturb these
almost balanced metrics to get balanced metrics. In order to do this, we need some
eigenvalue estimates which is done in Section 5.2. In the last chapter, we give a simple

construction of almost balanced metric in the case of one dimensional base manifold.

11



Chapter 2

Background

2.1 Stability of vector bundles

Let X be a compact complex manifold of complex dimension m. A positive-definite
(1,1)-form w on X is called Kahler if dw = 0. Let E be a holomorphic vector bundle

on X of rank r. We define the w-degree of E by

deg(E) = /X er(B) Awt,

and w-slope of E by
w(E) = degree(E)/rk(E).
Notice that if the complex dimension of X is one, then the degree(E) and p(E) do

not depend on the choice of Kahler metric w.

Definition 2.1.1. A vector bundle E is called Mumford-Takemoto stable (semistable
respectively) if for any coherent subsheaf F of E satisfying 0 < rk(F) < rk(E), we
have u(F) < w(E) (W(F) < p(E) respectively). E is called polystable if E is the

direct sum of stable vector bundles with the same slope.

There is a differential geometric interpretation for stability of vector bundles

12



known as the Hitchin-Kobayashi correspondence. We start with the definition of

Hermitian-Einstein metric.
Definition 2.1.2. A hermitian metric h on E is called Hermitian-FEinstein if
AwF(E,h) = ulg,

where A, is the contraction of (1,1)-form with respect to the Kdhler form w and F(g p)

is the curvature of Chern connection on (E,h).
The following is called the Hitchin-Kobayashi correspondence.

Theorem 2.1.3. Let (X,w) be a compact Kihler manifold and E — X be a holo-
morphic vector bundle. Then E is Mumford poly-stable if and only if E admits a

Hermatian-Einstein metric.
Another notion of stability for vector bundles is due to Gieseker.

Definition 2.1.4. Let (X, L) be a polarized manifold. A coherent sheaf & on X is
called Gieseker stable(resp. semistable ) if for any proper coherent subsheaf F of €

and k> 0, we have

W(F® LY hOE® LY

< ' .
k() < vk E) (< respectively )

2.2 Geometric invariant theory

This section gives some background on GIT. The goal of GIT is constructing quotient
spaces X/G when an algebraic group G acts on projective variety X. In order to
obtain a "nice” quotient space, one needs to through out "bad locus” of X. More
precisely, we need to take the quotient on the semi stable locus of X denoted by
X*. We will give the definition of stability in the case X = PV, where V is a
complex vector space. Let an algebraic group G acts on PV via a linear representation

p: G — GL(V). Therefore, we can lift the action of G to V.

13



Definition 2.2.1. Let x € PV and ¥ € V' be a nonzero lift of x.
e 1 is called stable if the orbit G.T is closed in'V and the stabilizer of x is finite.
e 1 is called poly-stable if the orbit G.Z is closed in V
e  is called semi stable if {0} € G.7.

In order to check that whether an element x € PV is stable, one needs to study
the whole orbit G.Z which can be quite complicated. There is a numerical criteria
known as Hilbert-Mumford criterion to check the stability condition. First, we need

to introduce the concept of one parameter subgroup and corresponded weight to it.

Definition 2.2.2. A one parameter subgroup of G is a nontrivial algebraic homo-
morphism X\ : C* — G. Let x € PV. Therefore xqg = lir% At)x ezists and is a fixed
point for the action of A(t). Let o be a nonzero lift of xo to V.. Then there exists a

real number w(x, \) so that

We have the following
Theorem 2.2.3. Let x € PV.
e 1 is stable iff w(xz, \) > 0 for any one parameter subgroup A of G.
e x is semistable iff w(xz, \) > 0 for any one parameter subgroup A\ of G.

e = is polystable iff w(x,\) > 0 for any one parameter subgroup A of G and

equality holds only if X fixes x.

One of the main applications of GIT is to form moduli spaces of varieties and

vector bundles.

14



2.2.1 Gieseker point

Let E be a very ample vector bundle over a polarised algebraic manifold (X, Ox(1)).
We have a natural map
T: /\HO(X, E) — H°(X,det(E)),
which for any sy, ..., s, in H°(X, E) is defined by
T(s1 Ao Asp)(x) = s1(x) Ao A sp(x).

Since E is globally generated T is surjective. The image of T in P(hom(A" H°(X, F), H°(X, det(E)))
is called the Gieseker point of F.

The following is proven by Gieseker:

Theorem 2.2.4. The bundle E is Gieseker stable (semistable respectively) iff the
Giseker point of E(k) is stable (semistable respectively) with respect to the action of
SL(H°(X,E(k))) for k> 0.

2.2.2 Chow point
Let X C PY be a smooth variety of dimension m and degree d. Define
Z={PeGr(N—-—m-1P")| P(X #0}.

One can see that Z is a hypersurface in the Grassmannian Gr(N —m — 1,PV) of
degree d. Therefore, there exists Ry € H°(Gr(N —m — 1,PY), O(d)) such that
Z = {R, = 0}. The section Ry is called the Chow form of X and X is called Chow
stable (semistable) if [Rx] € PH°(Gr(N —m — 1,PY),O(d)) is stable (semistable)
under the action of SL(N +1,C). Let (X, Ox(1)) be a polarized variety. Let m be a
positive integer such that Ox(m)) is very ample. Then (X, Ox(m)) is called Chow

stable if the image of X under the Kodaira embedding

L: X — P(H(X, Ox(m))*)

15



is Chow stable.

2.3 Balanced metrics on vector bundles

As above, let (X,w) be a Kahler manifold and E a very ample holomorphic vector
bundle on X. Using global sections of E, we can map X into the Grassmannian
Gr(r, H°(X, E)*). Indeed, for any z € X, we have the evaluation map H°(X, F) —
E,, which sends s to s(z). Since E is globally generated, this map is a surjection.
So its dual is an inclusion of Ef — HY(X, E)*, which determines a r-dimensional
subspace of H°(X, E)*. Therefore we get an embedding i : X — Gr(r, H'(X, E)*).
Clearly we have i*U,, = E*, where U, is the tautological vector bundle on G(r, H*(X, E)*),
i.e. at any r-plane in G(r, H(X, E)*), the fibre of U, is exactly that r-plane. A
choice of basis for H°(X, F) gives an isomorphism between Gr(r, H°(X, E)*) and the
standard Gr(r, N), where N = dim H°(X, E). We have the standard Fubini-Study
hermitian metric on U,, so we can pull it back to £ and get a hermitian metric on

E. Using i*hpg and w, we get an L? inner product on H°(X, E).

Definition 2.3.1. The embedding is called balanced if [ (s;, s;) £ = Cdy;, for some

constant C'" which is determined by X and E.

One can view the balanced condition as a fixed point of some map on the space
of Fubini-Study metrics. Let K and M be the space of Hermitian metrics on F and
Hermitian inner products on H°(X, E), respectively. Following Donaldson ([D2]), one

defines the following maps

Hilb: K — M,  h— Hilb(h)

N wn

(s, ) Hilb(n) = Vr (3($)at($)>hm

)

16



where N = dim(H°(X, E)) and V = Vol(X,w). Note that Hilb only depends

on the volume form w™/n!.

e For the metric H € M, FS(H) is the unique metric on E such that ) s; ®

*FS(H)
i

to H. This gives the map F'S: M — K.

= I, where s1, ..., sy is an orthonormal basis for H(X, E') with respect

o Define

T:-M—M

T(H) = Hilb o F'S(H). This map T is called the generalized T-operator in
[DKLR].

It is easy to see that a metric h is balanced if and only if Hilb(h) is a fixed point
of the map 7.

The following describes the balanced condition in terms of Gieseker stability.

Theorem 2.3.2. (?) Let E be a holomorphic vector bundle over a polarized manifold
(X,0x(1)). Then E is Gieseker polystable if and only if there is a positive integer

mo such that for any integer m > mg, E @ Ox(m) admits a balanced metric.

Fixing a nonzero element © € A" H(X, E), we can define the determinant of

any element in M. Thus we can define a map
logdet : M — R.

A different choice of © only changes this map by an additive constant.
Also, we define a functional [ : K — R again unique up to an additive constant.

Fix a background metric hy. For a path h; = e®*hg in K,

dl
(2.1) i /Xtr(gb) dVol,

17



This functional is a part of Donaldson’s functional independent the path. We define:
(2.2) Z=—-I0FS:M—R
We have the following scaling identities:
Hilb(e®h) = e*Hilb(h),

FS(e*h) = e*FS(h),
I(e®h) = I(h) + arV,

where « is a real number.

Following Donaldson, define:

(2.3) 7 =17+ %log det .

So Z is invariant under constant scaling of the metric.

This functional Z is studied by Wang in [W1] and Phong and Sturm in [PS]. They
consider this as a functional on SL(N)/SU(N). In order to see this, we observe that
there is a correspondence between M and GL(N)/U(N). Fix an element Hy € M
and an orthonormal basis s1, ..., sy for H°(X, E) with respect to Hy. Now for any
H € M we assign [H(s;,s;)] € GL(N). Notice that a change of the orthonormal
basis only changes this matrix by multiplication by elements of U(N). So we get a

well-defined element of GL(N)/U(N). The subset
MO = {H S M| det[H(si,sj)] = 1}

corresponds to SL(N)/SU(N).

Recall the definition of the Gieseker point of the bundle E.

T(E) /\ HO(X, E) — HO(X, det(E)).
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Notice that fixing a basis for H°(X, E) gives an isomorphism between \" H°(X, E)
and /\" CV. Hence, there is a natural action of GL(N) on Hom(A" H*(X, E), H°(X, det(E))).
Phong-Sturm ([PS]) and Wang ([W1]) prove that Z is convex along geodesics of
SL(N)/SU(N) and its critical points are corresponding to balanced metrics on E.

Phong and Sturm prove the following

Theorem 2.3.3. (/PS, Theorem 2]) There exists a SU(N)- invariant norm ||.|| on
Hom(\" H°(X, E), H*(X,det(E))) such that for any o € SL(N)

|o.T(E)|?
Zlo) = log gy

Theorem 2.3.4. ([W1, Lemma 3.5/, [PS, Lemma 2.2]) The functional Z is convex

along geodesics of M .

The Kempf-Ness theorem ([KN]) shows that Z is proper and bounded from below
if T(F) is stable under the action of SL(N).

The following is an immediate consequence of the above theorem and the fact that
balanced metrics are critical points of Z. Also notice that 7 is invariant under the

scaling of a metric by a positive real number.

Theorem 2.3.5. Assume that Hy is a balanced metric on E. Then Z|M0 is proper

and bounded from below. Moreover Z(H) > Z(H,) for any H € M.
Lemma 2.3.6. For any H € M, we have
Tr(T(H)H™") = N
Proof. Let h = FS(H) and let sq,..., sy be an H-orthonormal basis. We have,
Z s;i@sih=1

Therefore,

r :Tr(zsi@)s:h) = Z’Sl,i
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Integrating the above equation implies the result.

Lemma 2.3.7. For any H € M,
e Z(H)>Z(T(H)).
e logdet(H) > logdet(T(H)).

o Z(H) > Z(T(H)).

Proof. Put h=FS(H), H =Hilbo FS(H) and b/ = FS(H') = e*h. Let sq,...,sy

be an H’-orthonormal basis. We have,

g s @ s =e"%.

Hence,

/Xtr(—SO)Z/Xlogdet(e—sO) S/Xlog (t'r(iw))T

1
= r/ log(tr(e™%)) —rVlogr < rVlog (—/ tr(e‘“”)) —rViogr
be Vix

=1V log (%/ Z\slﬁl) —rVlegr=20
X

This shows the first inequality. For the second one, Lemma 2.3.6 implies that

tr(H'H™') = N. Using the arithmetic -geometric mean inequality, we get

This implies that logdet(H'H ') < 0. The third inequality is obtained by summing

up the first two.
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A holomorphic vector bundle E is called simple if Aut(E) ~ C*. We will need the

following

Lemma 2.3.8. Suppose that E s simple and admits a balanced metric. Then the

balanced metric is unique up to a positive constant.

Proof. Since det(H) YN H € M, for any H € M, it suffices to prove that a balanced
metric in My is unique. Let H,, € M, be a balanced metric on F and sq, ..., sy be an
orthonormal basis of HY(X, E) with respect to H,,. This basis gives an embedding
t: X — Gr(r,N) such that .*U, = E, where U, — Gr(r, N) is the universal bundle
over the Grassmannian. Assume that H is another element of M,. Therefore, there
exists an element a € su(N) such that €. H,, = H. Then {e"*} gives a one parameter

family of automorphism of (Gr(r, N),U,) and therefore a one parameter family in

Aut(X, E). From lemma 3.5 in [?], we have

d2 ita ~
(2.4 () = /(X) [l Pavols,

where a is the vector field on Gr(r, N) generated by the infinitesimal action of a and
||@|| is the Fubini-Study norm of @. Suppose that H is a balanced metric. Therefore

it is a minimum for the functional Z. This implies that

d2 ita
@Z(e ) = 0,

and hence by (5.12) that EL|L (x) = 0- This implies that the one parameter family {e®®}
fixes (X)) pointwise and therefore it induces a one parameter family of endomorphisms
of E. By the simplicity of F, this induced map must be a constant scalar of identity.

Since it also has determinant 1, this concludes the proof.
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2.4 Balanced metrics on manifolds

Let X be a compact Kéhler manifold of dimension n and Ox(1) — Y be a very
ample line bundle on X. Since O(1) is very ample, using global sections of Ox (1),
we can embed X into P(H°(X,Ox(1))*). A choice of ordered basis s = (sq, ..., sx)
of H%(X,Ox(1)) gives an isomorphism between P(H°(X,Ox(1))*) and PN~!. Hence
for any such s, we have an embedding ¢, : X < P! such that (;Op~ (1) = Ox(1).
Using ¢, we can pull back the Fubini-Study metric and Kahler form of the projective

space to O(1) and X respectively.

Definition 2.4.1. An embedding ¢, is called balanced if

(s5i,5:) LsWRs V5
S ) e = .
x 1 2) /s s n' N 179

where V = fy ‘:L—S,L A hermitian metric(respectively a Kdhler form) is called balanced

if it is the pull back (hps (respectively tiwrs) where s is a balanced embedding.

2.5 Some basics of ruled manifolds

Let V' be a hermitian vector space of dimension r.

Definition 2.5.1. There is a natural isomorphism”: V — H°(PV*, Opy+ (1)), which
sendsv € V tod € H'(PV*, Opy«(1)) so that for any f € V*,6(f) = f(v). Therefore,
any hermitian product h on'V defines a metric h on HO(PV*, Opy«(1)). Indeed, for

any f € V* and v,w € V, we define

~ . f(0)f(w)
(2.5) h(o(Lf1), w([f]) = R
Lemma 2.5.2. For any v,w € V, we have
(2.6) <v,w>:cn/w <@,w>%



where C,. is a constant defined by

dé A dE
e (L4 3000 162+

Here dg A dE = (v/=1déy AdEy) A~ A (V=1dé,1 A dE, ).

(2.7) C, =

Proof. Let ey, ...,e, be an orthogonal basis for V. So for any e;, we get a section

¢; € H'(PV* Opy«(1)). For f € V* we can write f = >_wje;. By definition, we

~ e 2
have |¢; [Qf] = ‘fl(f\gl . Then,

5 |f(ed)|? |wi?
|Zq d[f] = d[f] = dVol = ¢,.
/IPV* € lm ] > Jw;? ] pve D |wyl? 7o

This number is independent of 7 and only depends on n = dim PV*. Also one can

check that for ¢ # j, we have

wiw-
(€1, €)1 = J_ dVol = 0.
/]pv* 3ilf] pve D |wjl?

]

Similar to the case of vector spaces, we have the natural isomorphism H°(PE*, Opp«(1)) =
HYX, E).

Also, for any Hermitian metric h on E, we have a Hermitian metric h on Opp- (1).
For any metric H in Mg, we can naturally define a metric j(H) on H*(PE*, Opg-(1)).

Indeed, for any s,t € H°(X, E), we define

A

H(s, ) = j(H)(5,1).
Theorem 2.5.3. For any H in Mg, We have

FS(H) = FS(j(H)).

Proof. Let H := j(H) and h := FS(H). Also we will use |[|.|| to denote i(h). Let

s1,..., sy be an orthonormal basis for H°(X, E) with respect to H, and let 31, ..., 8y
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be the corresponding basis for H'(PE*, Opg-(1)). By definition of H, 4,...,8y is an

orthonormal basis for H°(PE*, Opg-(1)). Thus, we have

Z |§i|FS(1§r) =1
and

*
E s;®s; M =1,

Let e, ..., e, be a local orthonormal frame for £ with respect to h and €7, ..., e} be
its dual basis. Also let é1, ..., é, be the corresponding local sections for Opg-(1). For
e € E we have

lé]

) = (ei e > = e (e)]*.

i
Therefore, for any v* € E*, where v* =Y \;el, we have

Hé||2 o Z|/\i|2|<€i7€> |2
el — .
22 Aiej] SIENE

Writing s, ..., sy in terms of the local frame, we have s; = > a;;e;. We denote the

matrix [a;;] by A. Notice
Z 5 ® 5,7 = I if and only if A*A = I.

We also have

Sillor = (51, € = ij€5, €k)|” = |Qik|”-
1ill20 = (siven > [P =[O aijes, en)” = law?

Summing them, we get

pIE

As above, let v* = > \jef. Without loss of generality we can assume ||v*|| = 1. Thus

2 12 = = * _
GZ—Z’%JJ —Zazkazk—(A Ar = 1.

we have

= Z Akl ain?,
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then we get

SIS =YY T IPlal =D I laal* =Y Il = ot)* = 1.

Since the identity »_[8i|pgg) = 1 determines F'S (H) uniquely, we conclude that

~

FS(H) = i(FS(H)).
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Chapter 3

A functional on the space of

Fubini-Study metrics

3.1 Definitions

Let (X,w) be a projective Kéhler manifold and E be a holomorphic vector bundle
on X. We also assume that £ is very ample, so in particular any fibre is generated
by global sections of E. Since F is globally generated, using global sections of E, we
can embed X into G(r, H*(X, E)*). Indeed, for any z € X, we have the evaluation
map H°(X, E) — E,, which sends s to s(x). Since E is globally generated, this map
is a surjection. So its dual is an inclusion of E* — H°(X, E)*, which determines
a r-dimensional subspace of H°(X, E)*. Therefore we get an embedding i : X —
G(r,H°(X, E)*). Clearly we have i*U, = E*, where U, is the tautological vector
bundle on G(r, H°(X, E)*), i.e. at any r-plane in G(r, H*(X, E)*), the fibre of U, is
exactly that r-plane. A choice of basis for H(X, E) gives an isomorphism between
G(r, H°(X, E)*) and the standard G(r, N), where N = dimH°(X, E). We have the

standard Fubini-Study hermitian metric on U,, so we can pull it back to £ and
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get a hermitian metric on E. Also, since X is a smooth subvariety of G(r, N), the
restriction of the Fubini-Study Kéhler form of G(r, N) to X is a Kéhler form. Using
i*hrs and wrg|y, we get an L? inner product on H°(X, E). The embedding is called
balanced if [ (s, s;) whg = Cd;;.

We can also define another kind of balanced embedding by fixing some Kahler form
w on X. More precisely, we call the embedding w-balanced if | x (80, 85) W = Cdyj.
Note that in the definition of strongly balanced embedding we do not need to fix
Kahler form on X, but being w- balanced depends on the choice of Kahler form, or
more precisely on the volume form of the Kahler form. We are going to phrase the
above discussion in slightly different langauge.

Let h be a hermitian metric on E. We define a (1, 1)-form w, on X by w, =

00 log det(h). For any bundle endomorphism ®, we have

(3.1) Weap = wy, + 00t (P).

We let g be the space of all hermitian metrics h on E, with the property that w, is
positive and we let Mg be the space of hermitian inner products on H°(X, F). We

will construct the following
e Given h in K, we define a hermitian inner product Hilb(h) on H°(X, E) by

N
(8, t) Hitv(n / x))pdVoly,

where N = dim(H°(X, E)) , dVol;, = L;—f? and V = Vol(X,h). In this way we

get a map Hilb: K — M.

Note that if E is a line bundle, then the map Hilb becomes the usual map defined

by Donaldson. We have the following definition.

Definition 3.1.1. A metric h on E is called strongly balanced if FSo Hilb(h) = h.
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Recall the definition of T the Gieseker point of E. For simplicity through this
chapter we denote it by T". After possibly tensoring by a high power of an ample line

bundle, we may assume 7' is surjective. This implies that
T : H'(X,det(E))* — /T\HO(X, E)*
is injective. Let m be a positive number. One can construct in a similar way
(3.2) T . gm /\ HY(X,E) — H°(X, (det(E))®™).
This gives the inclusion
(T™)* : HY(X, (det(E))®™)* — Sm/\HO(X, E)*.

Definition 3.1.2. The map (T"™)* and an inner product H on H°(X, E) induce a

hermitian inner product T (H) on H°(X, (det(E))®™).

Since F is very ample, we have the following embeddings:

e Using global sections of E, we can embed X into G(r, H°(X, E)*). Indeed, we
get an embedding f : X — G(r, H(X, F)*), where f(z) is the r-dimensional

subspace of H°(X, E)* defined by

HY(X,E) — E, — 0.

e Using global sections of (det(F))™, we can embed X into P(H°(X, (det(E))™)*).
This embedding,
Jm : X = P(HO(X, (det(E))™)"),

is defined by
HO(X, (det(E))™)* — ((det(E))™), — 0.
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e We have the embedding X — P(A\" H°(X, E)*), z + i(z) defined by
i(x)(s1 A e Asp) = [s1(x) Ao A sy ()]

for any sy, ...,s, € H'(X, E).

e Using global sections of O(m) on P(\" H°(X, E)*), we have the embedding
IED(/\ H(X,E)*) — P(S™ /\HO(X, EY").
Composing this with 7, we get the embedding
im » X — P(S™ /\HO(X, E)").
We have the following lemma:
Lemma 3.1.3. ° (T(m))* 0 Jmn = Im

e plo f =i, where pl : G(r, H*(X, E)*) — P(A\"HY(X, E)*) is the Plucker

embedding.

Proof. Let z € X, s, ..., s € HO(X,E) and X; = s” A ... A s!”. Then we have
1 1

() (o (@) (X1 X)) = i () (T (X1 X))

The second part is obvious from the definitions.
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We also have the following:

Proposition 3.1.4. For any metric H on HY(X, E), we have
det(FS(H))®™ = FS(T™(H)).

Proof. The metric H on H°(X, E) induces a Fubini-Study metric h%% on U, —
G(r, H(X, E)*) and a Fubini-Study metric hrs on O(1) — P(\" H°(X, E)*). The

latter metric induces a metric hpg,, on O(1) — P(S™ A" H°(X, E)*). Therefore,
pl*hps = det(hS%), vl hpsm = hE,
Where
v : P(\ H(X, E)*) = P(S™ \ H'(X, E)")

is the Veronese embedding. By definition, we have F'S(H) = f*h&%. Therefore we

have
(det(F'S(H)))*™ = (det(f*hs))*™ = (f* det(hFs))™™
= [Pl hiEg = [ pl v hpsm = (vm o plo f) hrsm
= (Um 1) hpsm = tphrsm = jm(T™)7)) hps.
On the other hand 7™ (H) induces a F'S metric hpg = ((T™)*)*hrsm on P(H? (X, det(E)®™)*).
By definition, FS(T™(H)) = j}hpg-
[

We fix a metric Hy on H°(X, F), an orthogonal basis sy, ..., sy for H°(X, E) with
respect to Hy and an orthonormal basis 1, ..., #;, for H°(X, det(F)) with respect to

T(Hy). We can write T as

T=> T, ®ta,
where

.....



Hence, we have

(3.3) AT: NN\ H (X, E)) — )\ H(X,det(E)) ~ C.

So A" T can be viewed as an element of A"(A” H°(X, E)*). We note that any

inner product on H°(X, E) induces an inner product on A*(A\" H°(X, E)*).
Proposition 3.1.5. For any inner product H on H°(X, E), we have
k
det(T(H)) = || ATz
where det(T'(H)) = det({t;, t;)rm))-
Proof. We have
(o tp) ey = (T°(t6), T" () o = (T, Tp) ar--

So we have

log det(T'(H)*) = log det(T%, 1) u,

which gives the following

logdet(T(H)) = —logdet(T,, Ts) m.

The conclusion follows from the following general linear algebra fact:

Lemma 3.1.6. Let V and W be vector spaces of dimension N and k, respectively. Let
A be a linear map from V to W. Fizing a basis wy, ..., wg, we can write A =Y A; @y,

where A; € V*. Then for any inner product (,) on V', we have

det((A;, 4;)) = 1] \ All*

Similarly, if we fix an orthonormal basis 1, ..., tyum) for HY(X, det(E)®™), we can

prove the following:
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Proposition 3.1.7. For any inner product H on H°(X, E), we have
p(m)
det(T(H)) = || A\ T™[%,

where det(T™(H)) := det((t;, t;)rm(m))-

3.2 Existence of strongly balanced metrics

The goal of this section is proving the following theorem:

Theorem 3.2.1. Let X be a compact Riemann surface. If (X, (det E)®™) is Chow
semistable for some sufficiently large m and E is stable, then E admits a strongly

balanced metric.

In order to prove the above theorem, first we prove theorem 3.2.6. A natural
question arising from theorem 3.2.6 regards sufficient conditions for the stability of
the point A" (m) 7(m) - Gieseker and Morrison proved that for rank two vector bundles
on a smooth curve, the stability of E implies the stability of the point A” (m) (m) for
m > 0. Later Schmitt generalized their theorem to higher rank vector bundles over
smooth curves. Theorem 3.2.6 combined with Gieseker, Morrison and Schmitt results
imply theorem 3.2.1. Thus, in the remainder of this section we proceed by proving
theorem 3.2.6.

Let L be a holomorphic line bundle over X. We introduce there is a unique

functional I : K — R defined using the variational formula,

(3.4 GHa0) =7 [ ety ava,,

where g; = e¥*gp is a smooth path in Kp. This functioanl is defined up to a constant
which can be fixed by fixing the metric go in Kp. This functional is analogue of

functionals defined by Donaldson and Mabuchi.
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Let E be a holomorphic vector bundle of rank » on X. For any hermitian metric
h on E, we have a hermitian metric det(h) on det(E). Obviously, for any h € Kg,
we have det(h) € Kgey(p). Now we can define a functional F': Kp — R, unique up to

a constant, which is defined using the following variational formula:

d 1

(35 GF0) = [ Tt avo,,

where h; = e?®hg is a smooth path in g . Therefore, since the functional I is
well-defined, then the functional F' is well defined on K. We now define the function
L:Kg— Rby

L(H)=—-FoFS(H).

Lemma 3.2.2. 1)Let H; = e H be a path in M. where §H is a hermitian matriz.

We have:
d

dt

L(H,) = /X Tr(5H (5,5 psum)diirsi,

t=0
where sy, ..., sy is an orthonormal basis for H°(X, E) with respect to H

2)The functional L is convezr along geodesics in Mg.

Proof. Let si(t),...,sn(t) be an orthonormal basis of H°(X, E) with respect to H;.

Thus, we have
0i = (si(t), 3;()) psqay = (" si(t), 55(t)) psian)-
Differentiating it with resect to t at t = 0, we get
(0H s, 85) sy + (55(0), 85) rsy + (815 55(0)) sy = 0,

which implies dH = D + D*, where D is defined by s;(0) = > d;;s;. On the other

hand, by the definition of F'S(H;), we have
D silt) @ si(1) ) = 1d.
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It implies for any v in E, we have

0= (v.si®)pseysi(t) = Y (v, s:() psisi(t),
where ¢, is defined by FS(H;) = e*FS(H).

Again differentiating the above equation with resect to ¢t at t = 0, we obtain

Y (dv,sibesunsi + Y (0,50 msansi + ) (v, sidrsinsi(0) =0,
which gives
dv=— Z(v, si(0)) rs(r)Si — Z<U, si)rs(m)5;(0)
=D (v, psumsi — Y dig{v, s psins,
== (0H)ij(v, 8:)ps(ins;-

Let ey, .., e, be an orthonormal frame for £ with respect to hy = F'S(H). The matrix

AA* is (s;,55) ps(a) We can write

S; = Z aijej.
Therefore, we get
pep = — Z(éH)ija_majqeq
So the matrix of ¢ in the local frame ey, .., e, is given by A*§ HA. So, we have

tr($) = tr(A*SHA) = tr(SHAA).

This proves the first part.

Corollary 3.2.3. H is a critical point of L if and only if it is strongly balanced.

As above we have fixed the metric Hy on H°(X, E), so we have the metric T'(H,)

on H°(X,det(E)) and det(FS(Hp)) on det(E). Let ti,...,t; be an orthonormal basis
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for H°(X, det(E)) with respect to T(Hy). Using this, we can define logdet : M — R

and I : Kaey(py — R. We recall that the functional I is defined using the following

dI / .
—_— = w
dt XQO .

where g; = e¥* det(hy) is a path in Kgey(r). Now we define the functional Z on Me(r)

variational property:

by
- 1%
(3.6) Z =—10oFS§, Z:Z+Elogdet

In the rest of this section, we relate the functional Z to the functional L from the

previous section.

Proposition 3.2.4.
v k
Z(T(H)) = L(H) = +-log]| AT

Proof.

Z(T(H)) = Z(T(H)) + - log det(T(H))
_ _[(FS(T(H))) + %log det(T(H))

= —I(det FS(H)) + % log det(T'(H))

Vv k
= L(H) = log || \ Tl

Similarly we can prove the following:

Proposition 3.2.5.

p(m)
Z(T() = L(H) = s tog| A\ T

where Z,, is the related functional on Mge pyem and p(m) = h°((det E)®™).
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Now we can prove the following

Theorem 3.2.6. If (X, (det E)®™) is Chow semistable and the point A\P™ T s

stable under the action of SL(H°(X, E)), then E admits a strongly balanced metric.

Proof. Since (X, (det E)®™) is Chow semi-stable, we have that Z,, is bounded from
below. Using the Kempf-Ness theorem,[KN], the stability of the point A" (m) p(m)

implies that the function V : glL]((]A\[[)) — R, defined by V(o) = log [| A""™ oT|2, | is

proper and bounded from below. On the other hand, we can see that

p(m) p(m)
1A TN, =11 A\ T,

which implies log || AP"™ T2, is proper and bounded from below. So the formula

B e p(m)
Zn(T"(H)) = L(H) — o) log || A\ T3

implies that L is proper and bounded from below. Therefore, L has a critical point

which is a strongly balanced metric.

3.3 Convexity of the functional L

In this section we follow Donaldson [D4]. Our proof is essentially Donaldson’s proof
with some very minor modifications. Let L be a line bundle and X be a Kahler
manifold. Assume F is very ample. Let A = {s, ..., sy} such that it contains a basis
for H°(X, L). Using A, we can embed X into CP". Let h be the FS metric on L and

let w be the pull back of the FS Kahler form on X. We have

Z’Siﬁl =1

Following Donaldson, we denote the following pairings by (., .)

T"X x (T"X® L) — T*X
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Lx(T"X®L)—-T"X
T°X xT*X —- R
LxL—R,
which are obtained by using h and w.

Lemma 3.3.1. For any function f on X we have

V> =2 [V, Vs

Proof. Assume at the point x, we have sy # 0 and Vsg = 0. We can find local

holomorphic functions near x so that s; = f;sg. We have

|so]* = (1 + Z i)~
and

=YL oblog(1+ Y I1)

Thus, at the point x, we have
Jv—1 -
= — afi NOf;.
w=-"—> 0fiNOf
Now for the function f, we can write
of =Y g:0f:.

So,
(Vf,Vs;) =tr,(0f NOf;)so

At the point x, we have

tro(0f NOf) = tru(Y_ Ofaga N Of)) = o

Hence, at the point x, we have

Wik
SoIVE Vs = 3 laPlsolt = sy ool = IV

37



We are ready to prove the convexity of functional L.
Let H; be a geodesic in Mg. One can find an orthonormal basis s, ..., sy for

H°(X, E) with respect to Hy so that

Hy(Sa,$3) = Sape™t.
— Y
So e%tsl, ...,eTNtsN is an orthonormal basis with respect to H;. We let hy =
FS(Ht) = €¢th0.
Thus, we have
Z e s ® s:ht = 1d.
Since h; = e®hy, we get

_ Y. *p,
e d)t: E e AztS,L'@Si 0,

Taking the determinant and log gives

tr(—¢;) = logdet (Z et ®5,").

Differentiating with respect to ¢, we get

(3.7) tr(g) =tr(D_ e Msi @) (D] Ne s @5,™0)),

So

. tr(¢ =t \is; @ 5,70
(38) r()] _ = trQ_Aisi @5,

39 t h =1 )\Z 3 Tho 2 )\2 7 %ho .
(39) PG| = (3D Ais 8700 = (3 s 07)
We denote gbt‘ simply by ng and ggt by gzﬁ

t=0 t=0

Lemma 3.3.2.

Tr(s;®s;) = |s:]2,

Tr((si @ s7) o (s; @ 57)) = |(si, 7).

38



Using the above lemma, we have

(3.10) tr(gb) = Z )\i|5i|27
(3.11) tr(6%) =D Nl (sy 80 [7,

(3.12) () = X1+ 30 Myl (s )
These imply
3} 1 .
P [ —5IV@)F + s = a5

Thus, we can embed X into some big projective space using (s;, A ... A S;. )i <. <ir a8

a set in H°(X,det £). The pull back of the FS Kéhler form is Ric(hg). We have

D L A e A Siy ey = 1

Using the first lemma, we have
(3.13) \Vir(o Z| Vitr(¢), Vsi, A ... Asi,)|?.

Let ¢ = tr(¢). We use the inner products H; to embed X into Grassmaninan and
projective space. Let sy, ..., sy be an orthonormal basis for H°(X, E) with respect to

H,;. So we get the FS metric h; on E. As before we have

D sit) @ si(t) e = 1d

and

Z |si1 (t) ARTAA Sir(t)|glet(ht) =1

- —AN . . .
We have e 2 !sq,...,e 2 'sy is an orthonormal basis with respect to H,. So we can

put s;(t) = e2*ts;. We have
1= Z |8i1 (t) ARTAN Slr |det (ht) — Z et?” ¢ ’311 /\ e N sir@)’aet(ho)?
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which implies
(3.14) Z e 5 A LA S gy = €Y.
Differentiating with respect to ¢, we get

(3.15) S e

Siy A o A Sir’iet(ho) = tr(qb.t)e_"(@).

(3.16) — Z)@ e Pinir g A LA Sir|§let(ho) = —tr(d)2e ") 4 tr(d)e ),

010y

Evaluating at ¢ = 0, we obtain

(3.17) Z Xy |Sis A oo N Sietine) = tr(¢)

(3.18) = Nl A A si i = —tr(9)” + tr(9).
Using (3.10), (3.11) and (3.12), we get
(3.19) S Nlsil? =" Niidsi A Asieino)
(Z Niv i Si A oo A si Veiing))* — Z A ilsin A A si oo
= =Y NlsilP Y AN (s s
Lemma 3.3.3. Consider the positive function F
F =Y |Ve,V(si, A Asi) = Nipiy — )80 A Asi)?
on X, where A\i; i, = > Ni,,- Then

i:/ Fuy, .
b

Proof. Let I denote multi index (iy,...,%,) and S; = s;; A ... A's;,. Using Donaldson’s

pairing for the line bundle, det(F), we have
F=Y"|(Ve,VSr) — (A1 — )81,
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where ¢ = tr(¢). Thus,

lo. . : .
F=3IVel + 1O = @)PISi* =2 ((Vé, VS1), S1)(2Ar = ).
Again, according to Donaldson, we have

(V¢,VSr),S1) = (Vp, (VST 51)),

which implies

2((V¢> VSI)a 51)()\1 - @) = (V@’ V|SI’2)()‘I - @)-

Since we have
V|Si|? = 2(S1, VSy),

and Y |S7|? = 1, we obtain

> (Ve VS, S1)p = (V& VY |Si)e = 0.

So,

1. , ) I . .
F=2|Vol + 3 10 = @)1 = VIgP = =5 Vel* + 31 = @)PISi,

Since 3 A\;|S;|2 = tr(¢) = ¢. Hence,
L. , ,
F= _§|V90|2 + Z(/\% + ¢* = 219) |51

1. . .
= =5V + Y MISiP+ ¢ ) 181 =20 ) MilSif?

_ 1 .12 2 2 2 ]' =12
—5IVEP + D NS = P =~ IVl — tr(9).

]

From the above computation, we can derive the following amusing linear algebra

identities:
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Corollary 3.3.4. Let A be a N x r (r < N) matriz and Ay, ..., \n real numbers .If

A*A = 1d, then

Z)\ lay|* = Z Niy | det(Ag, i, )]

i1 <...<ir
212 2 2
E A; |a,]| +2 E i |azk| |aq|® = § )\zl i | det(Ai,.i,.)|%,
k<l i1 <...<ir
where A;, . s, is the r X r matriz whose rows are the respective i, ....i" rows of A and

21 Ar E >\z]
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Chapter 4

Donaldson’s dynamical system

In [D3], Donaldson defines a dynamical system on the space of Fubini-Study metrics
on a polarized compact Kahler manifold. Sano proved that if there exists a balanced
metric for the polarization, then this dynamical system always converges to the bal-
anced metric ([Sa]). In [DKLR], Douglas, et. al., conjecture that the same holds
in the case of vector bundles. In this paper, we give an affirmative answer to their
conjecture.

Let (X,w) be a Kéhler manifold of dimension n and E be a very ample holo-
morphic vector bundle on X. Let h be a Hermitian metric on £. We can define a

L2-inner product on H°(X, E) by

(s, 1) :Lh(s,t)%.

Let sy,...,sny be an orthonormal basis for H°(X, E) with respect to this L?-inner

product. The Bergman kernel of h is defined by

B(h) = ZSZ' & S:h.

Note that B(h) does not depend on the choice of the orthonormal basis sy, ..., sy.
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A metric h is called balanced if B(h) is a constant multiple of the identity. By
the theorem of Wang, we know that the existence of balanced metrics is closely
related to the stability of the vector bundle E. Indeed E admits a unique (up to
a positive constant) balanced metric if and only if the Gieseker point of E is stable
(([W1, Theorem 1.1}), [PS]). On the other hand, a balanced metric is unique (up to
a constant) provided the bundle is simple.

The main theorem of this chapter is the following

Theorem 4.0.5. Suppose that E is simple and admits a balanced metric. Then for

any Hy € Mg, the sequence T"(Hy) converges to H,, where Hy, is a balanced metric

on F.

Our proof follows Sano’s argument in [Sa] with the necessary modifications for
the bundle case.

In order to prove the theorem, we consider the functional Z that is used by Wang
([W1]) and Phong, Sturm ([PS]) in order to study the existence and uniqueness of
balanced metrics on holomorphic vector bundles. The key property of this functional
is that its critical points are balanced metrics. In the second section we recall some
properties of the functionals Z and Z. In the second section, we give an appropriate
notion of boundedness for subsets of M, defined in [?]a. With this definition, any
bounded sequence has a convergent subsequence after a suitable rescaling of the se-
quence. Therefore in order to prove that the sequence H, = T™(H) converges , we
need to show that H, is bounded. On the other hand, existence of a balanced metric
implies that Z is bounded from below and proper in a suitable sense. Hence it shows

that Z (H,) is bounded. Now properness of Z implies that H,, is bounded.
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4.1 Proof

In this section, we closely follow Sano’s argument in ([Sa, Section 3]). Let si,...,sn
be a basis for H(E). With this basis, we can view elements of M as N x N matrices.

Now using this identification, we state the following definition introduced in Sano
([Sa])-

Definition 4.1.1. A subset U C M s called bounded if there exists a number R > 1,

satisfying the following: For any H € U, there exists a positive number vy so that

HEQ _ HE)]

7—H < min

R~ g = T <

Note that boundedness does not depend on the choice of the basis. Also notice that

(4.1) YuR

min |H (£)|/]€| is the smallest eigenvalue of the matrix [H(s;, s;)] and max |H(§)|/|¢]
is the largest eigenvalue of the matrix [H(s;, s;)].
From the definition, one can see that U is bounded if and only if there exists
R > 1 satisfying the following: For any H € U, there exists a positive number vy so
that
I[H (55, 85)llop < v R,

|[[H (si, Sj)}_IHOP < VI}IR'

Proposition 4.1.2. Any bounded sequence H; has a subsequence H,, such that 7;1,1 H,,

converges to some point in M. Here v; = g, in Definition 4.1.1.

Proof. The sequence 7, 'H,. is a bounded sequence in the space of N x N matrices
with respect to the standard topology. Hence the proposition follows from the fact
that the closure of bounded sets are compact.

]

Notice that the standard topology on the space of N x N matrices is induced by

the standard Euclidean norm. Since all norms on a finite dimensional vector space are
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equivalent, we can use the operator norm. Therefore a sequence { H,} in M converges

to H € M if and only if
|[Ha (s, s5)] — [H(si, sj)]|op —0 as a—0.

Lemma 4.1.3. The set U C M is bounded if and only if there exists a number R > 1

so that for any H € U, we have

1 [H ()]

H
< min < max 1H(O)]

- €]

< R,

1

R
where H = (det(H))™~ H.

Proof. Assume that U is bounded. So by definition there exists a number R > 1,
satisfying the following:

For any H € U, there exists a positive number v so that

. [H(E)]

7—H < min

H(E)|
T <kt

IS

< max

Let H be an element of U. Without loss of generality we can assume that H(s;, s;) =

e)‘i5z~j and \; < ... < Ay. For any 7, we have

< i< YaR.
This implies that vy < Re and vz > R™'e*. Therefore

MV < yuR < RQeAi,

and

eM >y R > R%eM,

for any 1 < i < N. Hence

z|~

(det(H)) T = M5 = (TLev )" < 12
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and

it = (L) 2
[

Let Hy be an element in M. We define the sequence {H,} by H, = Hilb o
FS(Hp-1).

Lemma 4.1.4. If {H,} is a bounded sequence in M, then det(H,) is bounded and
det(H, 1 H ') — 1 as n — oo.

Proof. Z(H,) is bounded since the sequence {H,} is bounded. On the other hand,
lemma 2.3.7 implies that the sequences Z(H,) and logdet(H,) are decreasing. So,
logdet(H,,) is bounded and decreasing. Hence, it converges to some real number.
This implies that det(H, 1 H,;') — 1 as n — occ.

]

Lemma 4.1.5. Assume {H,} is a bounded sequence in M. Let H be a fixed element
of M and sgl), ..s%) be an orthonormal basis with respect to H; so that the matriz

[H(s(l),sgl))] is diagonal. Then

N
W/X|sﬂildv0lx—>1 as | — oo,

where h, = FS(H,).

()

Proof. Let é’gl), & N ) be an orthonormal basis with respect to H; so that Hj,1(s; ;

is diagonal. Hence
det [Hl+1 § A(l) HHZ+1 30 §§
Lemma 4.1.4 implies that

det [Hi (51,89 — 1.



On the other hand lemma 2.3.7 implies that

tr[Hia (30, 30)] = N.

i 1°g

We define A4,(i) = Hlﬂ(é(l) A(l)). Therefore, we have

i 9%

N
(4.2) HAl(i) —1 as [ — oo,
i=1
N
(4.3) > Ai)=N, forany 1<I<N.
i=1
We claim that for any ¢,
(4.4) A(i) -1 as [ — oo.

Suppose that for some 1 < a < N, {A;(«)} does not converge to 1 as | — oo. This
means that there exists a positive number € > 0 and a subsequence {4; («)} such

that
(4.5) |A, () = 1] > €.

On the other hand, (5.5) implies that A;(i) < N since A;(i) > 0 and therefore the
sequences {A4; (i)} are bounded for any 1 < ¢ < N. Hence there exist nonnegative

numbers A(1),...A(N) and a subsequence {/,,} so that
(4.6) Ay, (i) = A(i) as j — oo

Therefore, (5.4), (5.5) and (5.8) imply that

HA(@) =1 and ZA(’L) =N



and equality holds if and only if all A;’s are equal. Since equality holds in this case,

we conclude that A(1) = ... = A(N) = 1. In particular
A (@) > 1 as j— o0,

which contradicts (5.7). This implies that H;, (s Z(l), sl( )) — 1 for all 1.
On the other hand, there exists [al;] € U(N) such that sgl) = Z;V L a;;8%. Since
U(N) is compact, we can find a subsequence of [a;] which converges to an element

of U(N). Without loss of generality, we can assume that there exists [a;;] € U(N)

such that aﬁj — a;; as | — oo. We have,

N
2
Hypi(s", s => al; abp Hy (51, E lag|* =1
]

Proposition 4.1.6. (c¢f. [Sa, Proposition |) If {H,} is a bounded sequence in M,

then for any H € M and any € > 0,

(4.7) Z(H) > Z(H,) — e,

for sufficiently large n.

Proof. Let sgl), s 553) be an orthonormal basis with respect to H; such that H(sgl), s§~l)) =

b A We fix a positive integer [. Define H,(s l(), s; ) dije 2 We have Hy = H,

and H; = H. Let f,(t) = f(t) = Z(H,). We have

= [rwa= [ (ro+ [ ) a
v 1 / sy dsdt > £(0),

since Z is convex along geodesics. On the other hand, we have
, Vr
F(t) = —< — I(FS(H,)) + 5+ log det(Ht)>
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:_/ jt(FS(Ht dvolX—l——Z/\

Therefore,

Vr
(48) 1(0) = ~ / (N 113, ) dvolx + 57 D A",
X

where h; = FS(H)).

0 N0
We have that ez sgl), e sg\l,) is an orthonormal basis with respect to H for

any . Hence lemma 4.1.3 implies that there exists R > 1 so that

det(H NG ENCI
(det(F)) % (Rl” < He 2 s e 2 s\") < (det(H,))

2|~

R,
for any ¢ and [. Therefore

1 1

+ log(det(Hy)) ~ log R < A0 < ~ log(det(H))) + log R.

This implies that {)\El)} is bounded since {det(H;)} is bounded by Lemma 4.1.4.

Hence (4.8) implies that f,(0) — 0, as [ — oo.

Corollary 4.1.7. If {H,} is a bounded sequence in M, then

Z(H,) — inf{Z(H) | H € M}.

Proof of Theorem 4.0.5. As before, fix Hy € M and an orthonormal basis si, ..., sy

for H°(X, F) with respect to the metric Hy. As in Section 2, let
My = {H S M‘ det[H(Si,sj)] = 1}

Assume that there exists a balanced metric on E. Since the balanced metric is unique
up to a positive constant, there exists a unique balanced metric H,, € M,. As before,
for any H € M, we define

H = (det H) ~H.
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Clearly H € M, and

Since there exists a balanced metric on E, theorem 2.3.5 implies that the functional
Z\m, is proper and bounded from below. Hence the sequence Z (ﬁ) is a bounded se-
quence in R since the sequence Z(H,) = Z (EL) is decreasing. Therefore the sequence

{an} is bounded in M, since Z)yy, is proper. We claim that

—~

H, — H, as n — oo.

Suppose that the sequence {f—[;} does not converge to H,,. Then there exists € > 0

and a subsequence {H,,;} such that
(4.9) [ Hp; — Hoollop = €

On the other hand, we know that the sequence {EI\,; } is bounded. Therefore there

exist a subsequence {f[:;z } and an clement H € M such that

—_— ~

Hnjq—>H as g — oQ.

Therefore,

1= det[Hnjq (SayS3)] — det[f[(sa, sg)] as q — oo,
which implies that He My. Now, corollary 4.1.7 implies that
) = Z(H,,) — inf{Z(H) | H € M}.

Hence,

Z(H)=inf{Z(H) | H € M}.

This implies that H is a balanced metric and therefore H, = H by lemma 2.3.8.

This contradicts (5.9). Thus H, — H., as ¢ — oo.
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Now lemma 4.1.4 implies that log det(H,,) is bounded. The sequence {log det(H,)}

is bounded and decreasing. Therefore there exists b € R such that
logdet(H,) —b as n — 0.
Hence det(H,) converges to the positive real number e®. Thus

=b
H,—eNH, as n— oo.

o2



Chapter 5

Main Theorem

5.1 Moment map setup

In this section, we review Donaldson’s moment map setup. We follow the notation of
[PS2].

Let (Y, wp) be a compact Kahler manifold of dimension n and O(1) — Y be a very
ample line bundle on Y equipped with a Hermitian metric gy such that Ric(gg) =
wp. Since O(1) is very ample, using global sections of O(1), we can embed Y into
P(H(Y,O(1))*). A choice of ordered basis s = (sy,...,sy) of H(Y,O(1)) gives an
isomorphism between P(H°(Y,O(1))*) and P¥~!. Hence for any such s, we have
an embedding ¢, : ¥ — PV~! such that ;;Opnv(1) = O(1). Using ts, we can pull
back the Fubini-Study metric and Kéhler form of the projective space to O(1) and Y

respectively.

Definition 5.1.1. An embedding ¢, is called balanced if

Lwrs V
/Y(Sz‘a Siizhrs™ 1 = 70
where V = fY 2_6: A hermitian metric(respectively a Kdhler form) is called balanced

if it is the pull back (hps (respectively tiwrs) where s is a balanced embedding.
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There is an action of SL(N) on the space of ordered bases of H°(Y,O(1)). Don-
aldson defines a symplectic form on the space of ordered bases of H°(Y,O(1)) which
is invariant under the action of SU(N). So there exists an equivariant moment map
on this space such that its zeros are exactly balanced bases.

More precisely we define

Z={s=(s1,...,5n)|s1, ..., Sy a basis of HO(Y, o(1))}/c*

and Z = Z /PAut(Y,O(1)). Donaldson defines a symplectic form €2, on Z. There is
a natural action of SU(N) on (Z,§p) which preserves the symplectic form 2p. The

moment map for this action is defined by

v

pp(8) = il(Sa; $5)n. — 370al;

where h, is the L2~ inner product with respect to the pull back of Fubini-Study metric
and Fubini-Study Kéhler form via the embedding ¢s. Also we identify su(N)* with
su(N) using the invariant inner product on su(N), where su(N) is the Lie algebra of
the group SU(N) and su(N)* is its dual. (For construction of Qp and more details
see ([D3]) and ([PS2]) .)

Using Deligne’s pairing, Phong and Sturm construct another symplectic form on
Z as follows:

Let

V={(z,s)|x € PV s = (s1,...,5n), 7 € 1,(Y)}

and Y = Y/PAut(Y,O(1)). One obtains a holomorphic fibration Y — Z where every
fibre is isomorphic to Y. Let p : Y — PV ~! be the projection on the first factor.

Then define a hermitian line bundle M on Z by

M= Opa (1), . Oprs (D)%)
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which is the Deligne’s pairing of (n + 1) copies of p*Op~-1(1). Denote the curvature
of this hermitian line bundle by 4. It follows from properties of Deligne’s pairing

that

(5.1) O = widt,
V/Z

Since SU(N) is semisimple, there is a unique equivariant moment map pp : 2 —

su(N) for the action of SU(N) on (Z, Q).
Theorem 5.1.2. (/PS2, Theorem 1]) Qp = Qp and pp = pip.

Let € be an element of the Lie algebra su(N). Since SU(N) acts on Z, the
infinitesimal action of ¢ defines a vector field oz(£) on Z. Fixing a point z € Z, we
have a linear map o, : su(N) — T, Z. Let o} be its adjoint with respect to the metric

on TZ and the invariant metric on su(N). Then we get the operator
Q. =050, :su(N)— su(N).
Define A! as the smallest eigenvalue of @,. In [D3], Donaldson proves the following.

Proposition 5.1.3. (/D3, Proposition 17]) Suppose given zy € Z and real numbers
A, 6 such that for all z = €*zy with |§] < § and & € su(N), A, < X. Suppose that

Mp(z0)| < 6, then there exists w = €™ with u(w) = 0, where |n| < Au(z0)|.

5.2 Eigenvalue estimates

In this section, we obtain a lower bound for the derivative of the moment map up.
This is equivalent to an upper bound for the quantity A, introduced in the previous
section. In order to do this, we adapt the argument of Phong and Sturm to our

setting. The main result is Theorem 5.2.4.
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Let (Y,wp) and O(1) — Y be as in the previous section. Let (L, hs) be a Her-
mitian line bundle over Y such that w,, = Ric(hy) is a semi positive (1, 1)-form on
Y. Define Wy = wg + kws. For the rest of this section and next section let m be the
smallest integer such that w™* = 0. Also assume that wj ™™ A W™ is a volume form

o0

and there exist positive constant n; and ns such that

(5.2) N;, = dim H°(Y,O(1) ® L*) = n k™ + O(k™ ).

(5.3) Vi = / (wo + ko)™ = nak™ + O(k™1),
Y

Notice that (5.3) is implied from the fact that wy™™ A wZ is a volume form and
wi = 0.

The case important for this paper is the following:

Example 5.2.1. Let (X,ws) be a compact Kdhler manifold of dimension m and L
be a very ample holomorphic line bundle on X such that we € 2mey(L). Let E be a
holomorphic vector bundle on X of rank r such that the line bundle Opp+(1) — Y =
PE* is an ample line bundle. We denote the pull back of we to PE* by ws. Then

W™ =0 and by Riemann-Roch formula we have

dim H°(Y,0(1) ® L*) = dim H*(X, E ® L") = %/ el (L)™E™ 4+ O(k™h).
cJX

The following lemma is clear.

Lemma 5.2.2. Let hy be a sequence of hermitian metrics on O(1) ® L* and let
s = (sgk), o 855)) be a sequence of ordered bases for HO(Y, O(1) ® L¥). Suppose that
for any k

k
SR =1

and

/Y<S(~k) S(k)>hkdv0lhk = D(k)&] + Mz(jk),

P 197
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where D®) is a scalar and M® is a trace-free hermitian matriz. Then

D(k)zﬁ_)@ as k — 0o,
Ny n

where the constants ny and ny are defined by (5.2) and (5.3).

We start with the notion of R-boundedness introduced originally by Donaldson

in [D3].

Definition 5.2.3. Let R be a real number with R > 1 and a > 4 be a fized integer and
let s = (81, ..., 5n) be an ordered basis for HO(Y,O(1)® L*). We say s has R-bounded

geometry if the Kdihler form w = 1jwrs satisfies the following conditions
o || — Wollca@e) < R, where Wy = wy + kwoo.

.@Z (;0.

==

Recall the definition of A, from the previous section. The main result of this

section is the following.

Theorem 5.2.4. Assume Y does not have any nonzero holomorphic vector fields.
For any R > 1, there are positive constants C' and € < ny/10n, such that, for any
k, if the basis s = (s1,...,sn) of H(Y,O(1) ® L¥) has R-bounded geometry, and if
lip(s)llop < €, then

A, < CEP™2,

The rest of this section is devoted to the proof of Theorem 5.2.4. Notice that the

estimate A, < Ck?*"*? is equivalent to the estimate
(5.4) 02(&)” > k2| |¢].

On the other hand (5.1) and Theorem 5.1.2 imply that

(5.5) o2(E)? = /Y I
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Hence, in order to establish Theorem 5.2.4, we need to estimate the quantity |, Ly, ngg !

from below.

For the rest of this section, fix an ordered basis st} = (s1, ..., sy5) of H(Y,O(1) ®
L¥) and let M®) = —ipp(s™). It gives an embedding ¢ = v, : Y — PN7!, where
N = N, = dim H°(Y,O(1) ® L¥). For any £ € su(N), we have a vector field Y; on
PV=1! generated by the infinitesimal action of &.

Every tangent vector to PNV~ is given by pairs (z,v) modulo an equivalence rela-

tion ~ . This relation is defined as follows:
(z,v) ~ (Z,0) if 2/ = Az and v' — M = pz for some A € C* and p € C.

For a tangent vector [(z,v)], the Fubini-Study metric is given by

vuztz — (2*0)?

[1[(z, 0)]II" = (2)°

Since the vector field Y¢ is given by [z,£z], we have

(g2 + (°€2)(72)

(56) IV(2)1? = ap

We have the following exact sequence of vector bundles over Y
0—=TY — TPV - Q — 0.

Let NV C «*TPY~! be the orthogonal complement of TY. Then as smooth vector

bundles, we have

CTPYN-L=TY @ N.

We denote the projections onto the first and second component by 7y and 7y respec-

tively. Define

01(2) = exp(it€)2,
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()|

=1
Spt(Z) og |Z|
Direct computation shows that
d 2*Ez
. - -9
(5:7) dt t:ospt(Z) Y
d’ (27€2)* — (27§%2)(2"2)
5.8 — =4 )
(5.8) dt? t:Ogot(z) (22)?

The following is straightforward.
Proposition 5.2.5. For any £ € su(N), we have
Imac¥e By = [ ot
Y

Therefore, the estimate in Theorem 5.2.4 will follow from:

(5.9) 1€11° < crk™||Yell*
(5.10) cpllmrYe|* < k™2 |mp Yl
(5.11) IVell* = [lmrYe||* + [lma Ve

We will prove (5.9) in Proposition 5.2.8 and (5.10) in Proposition 5.2.11. Assuming

these, we give the Proof of Theorem 5.2.4.

Proof of Theorem 5.2.4. By (5.5), we have

02(6)? = /Y -

Applying Proposition 5.2.5, we get
lo2()I* = [|mnYel|*.
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Thus, in order to prove Theorem 5.2.4, we need to show that
[ImnYel[* > epk™(" ] jg] 2.
By (5.9), we have
1E]17 < erk™ |[Yel[* = crk™||[marYel|* + crk™[|mrYel|*.
Hence (5.10) implies that

1€11° < crk™|lmnYel | + creph™™ 2 lmn Yel[*

< R el
]

Lemma 5.2.6. There exists a positive constant ¢ independent of k such that for any

feC=(Y), we have

_ 2
c/ o < k;m/ Df AOf NG +k—m(/ f@g)
Y Y Y
Proof. In the proof of this Lemma, we put wp = wy + kws and a = w; = Wy + Wee-

For k > 1, we have

Assume that the statement is false. So, there exists a subsequence k; — oo and a

sequence of functions f; such that [, f]zng =1 and
_ 2
km/afjAafj/\ngflek;m(/ fjw,’;j> — 0
Y Y

as k — oco. We define ||f[|* = [, f?a™. Hence

14 = [ oz i [ g =
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Let g; = f;/11f;]|. We have
/Iagj!ia”z/ggj/\aw&”_l
Y Y
— 15172 [ 38 nofy na
Y
Sk;n/gfj/\afj/\ng_l_)o as k — oo.
Y

On the other hand fy g?oz" = 1 which implies that the sequence g; is bounded in
Li(a™). Hence, g; has a subsequence which converges in L?(a™) and converges weakly
in L2(a™) to a function g € L3(a™). Without loss of generality, we can assume that
the whole sequence converges. Since fy |0g;|2a™ — 0 as k — oo, it can be easily seen

that g is a constant function. We have
k]m\/(gj —g)wi| < k;m/ |95 — glwr,
Y %

S/ l9; — gla”
Y

<c([ 1 - gPant —0.
Y
where C* = [, o™ does not depend on k. Hence
57 [ (0= g 0.

Since g is a constant function and [, wi, = N2k + O(k;”’l), we get

—m n
Y

where ns is defined by (5.3). On the other hand

(k;ngjwzj)Z Zkfzm\\fj\\_z([/fngj)z
< kj’“(/ fjwﬁj)2 —0
Y

which implies g = 0. It is a contradiction since [|g;|| =1 and g; — g in L*(a™).
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The proof of the following lemma can be found in ([PS2, p. 704]). For the sake

of completeness, we give the details.

Lemma 5.2.7. There exists a positive constant cg independent of k such that for any
Kdhler form & € ¢1(O(1) @ L*) having R-bounded geometry and any f € C=(Y), we

have
2
cR/f2w”<km/8f/\8f/\~" 1+/<:m(/fa;”>
Y
Proof. Since w has R-bounded geometry, we have

R™'Qy < & < 2R®,.

Therefore,

c(QR)—”/Yf%"gc/Yf gkm/afwfw“ 1+k—m(/yfa}g>2.

On the other hand, there exists a unique function ¢ such that @ — &y = 00¢ and
[y ¢@f = 0. Hence,

T —n = 88¢/\Zuﬂ/\w -
7=0

We have,

‘/f(&"—wo

’/f@@(b/\ZwJ/\N" -
/af/\agbAZoﬂ ALt

<y / B 100, (=)'
=0

n(2R)" / \éfraoraqﬁ\aowz:

<ol [wrea) ([ ot i)

_(J1 /afAE)f/\ ”1 /|3¢Iw03
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We will show that
/|a¢|2 ~n < C«Qka

Since & — &y = 99¢ and ||© — @o||ca(zy) < R, we have ||006||ce(z,) < R. This implies
that

1850¢l]00 < R.

Applying Lemma 5.2.6 to ¢, we get

c/y¢2 <km/a¢/\a¢/\~" !

On the other hand

| do3; /8¢/\8¢A~” : (/emwoqb
<([om)'( [ |Aao¢|2&3
<7 % ( /|a¢\2 ) /w0>é

= o ( /|a¢>|2 %)

Therefore,

/|a¢|2 ~n < CQka

| [ 1@ )

On the other hand

([ r) < (fs) + ([ s@-a)

So, we get

<Ckm /8fA8f/\~” 1)1
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Hence,

é/yj%ngkm/yéfwfwg—l+2k—m(([/f@”)2+ (Lf(@"—@3)>2)

_ 2 _
gkzm/(9f/\8fAc”J6“1+2k‘m(/f&”> +03k:m/afmfwg—l
Y Y Y

§C4<kmL5fA8fA@"1+km(/yf&")2>.

]

Proposition 5.2.8. There exists a positive constant cg such that for any & € su(N),

we have

1€]* < erk™|[[Yell?,
where ||.|| in the right hand side denotes the L*- norm with respect to the Kdhler form
w on'Y and Fubini-Study metric on the fibres.
Proof. By (5.6), we have

(2762)* — ("€%2)(2"2)

(2+2)?

Yl = —4

This implies that

*

1Yel 723 Ztr<§*§ / zzzgjn) _ / ((zzfzz))jm
ofee )|

We can write

/ zz*@n — DW[ 4
y 2*2 ’

where D®) — n, /ny as k — oo and M (%) is a trace free hermitian matrix with

|[M®)]|,, < e. Therefore,

IYel|> = |€PD®) + tr(reM ™) —/gb?a".
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Hence

tr (& EM BN = [tr(EMPE] < [1E] 1M B ]op < €[]

Since D®) — n, /n1 as k — oo, there exists a positive constant ¢ such that
I¥elP = eligl - [ e
On the other hand

= [tr(EM®)] < VNIEIM P

=

< ck 1€ MP]|op-

Now applying Lemma 5.2.7, we get

— 2
C/@%”gkm/&p/\agb/\w”1+km(/<p@")
Y Y Y

<im [ Bpnap AT+ aallg MR,
Y
This implies
(e = Col MBI )IEN? < |IYell + &™ /Ygsb NOY NG
Since || M®)||,, < € and € is small enough, there exists a positive constant ¢ such that

clélf? < HYéH?Mm/é@Aagbwn-l
Y

(Yl R /Y el

We know that 0@|y = tr,y,& which implies

cllEll* < IYell® + K™ [|mrYe|[*.
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Lemma 5.2.9. For k> 0, we have

|S(wo + kwao)| < Clogk,
where S 1s the scalar curvature.

Proof. We have

m m
n S . .
(wo + kwoo)" = Z (k) Koy Awly = (1+ Z K fi)wi,
j=0 j=1
for some smooth nonnegative functions f; on Y. The function f,, is positive, since

wy " AwZ is a volume form. Therefore there exists a positive constant [ such that

fm = 1> 0. We define
F=>k"f
=1

There exits a constant C' such that ||F||c2 < C, since F' is bounded independent

of k. We have

k:mVF> kKmV2AE K2M(VF)?

2log(1 + K" F) = V(42— = _ .
V- log(1+ K7 F) v<1+kmF T+ hF (14 ko F)?

Hence there exists a positive constant C' such that
| log(1+ k™ F)|, <mClogk + C,
since ||F||c2 is bounded independent of k£ and F' > f,,, > [ > 0. This implies that

|00 1og det(wy + kwa) ‘CO < |log det(wy + kwoo) ’CQ
= ‘ log(wo + kwoo)”|02
< |logw§| o + | log(1 4 K™ F

e

S 01 -+ sz log k.
Fix a point p € Y and a holomorphic local coordinate 2, ..., z,, around p such that

wo(p) = iZdzi A dz;,
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Weo(p) = ZZ Nidz; N\ dz;,

where \;’s are some nonnegative real numbers. Therefore, we have

|S(wo + kwso) (p)| = | Z(l + kX;) 1005 log det(wo + kweo )|

< Z(l + kX)) (Cy + Comlogk) < Cszlogk,

for k> 0.

Proposition 5.2.10. For any holomorphic vector field V on PN=1, we have
|TA V|2 > Crk™ O (mar V)2

Proof. The following is from ([PS2, pp. 705-708]). For the sake of completeness, we
give the details of the proof. Fix x € Y. Let eq, ..., e,, fi1, ..., fm be alocal holomorphic

frame for .*TPN~1 around x such that
L. e1(x),...,en(x), fi(2), ..., fm(z) form an orthonormal basis.
2. eq,...,¢e, is a local holomorphic basis for TY .

Then there exist holomorphic functions a; and b;’s such that

V = Zajej + ijfj

Notice that my f; — f; is tangent to Y since ma(mpn f; — fj) = 0. Therefore, we can

write
vfi— 1= Z¢ij€ja
where ¢;;’s are smooth functions. Since e1(x), ..., e, (), fi(2), ..., fm(z) form an or-

thonormal basis, we have ¢;;(x) = 0. Then
7T_/\/’V = Zb]<f] — Zgzﬁwez)
j=1 i
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It implies that

ArnV) = Zb — ) (0¢ij)es).

7

So in order to establish 5.2.10, we need to prove that

DI 600y < CRE Y (b
=1 j=1 j=1

Using the Cauchy-Schwartz inequality, it suffices to prove
Z Z |5¢z’j|2 < Ok,
i=1 j=1
where Cy = Cy(R) is independent of k (depends on R.) Now the matrix A* = (¢;;)
is the dual of the second fundamental form A of TY in *TPN~!. Let F,.rpn-1 be
the curvature tensor of the bundle .*TPV~! with respect to the Fubini-Study metric.
Fppn-1 is a 2-form on Y withe values in End(.*TPN ™). Thus F.qpy-1 |, is a two
form on Y with values in Hom(TY, *TPN=1). So, o (Fppn-1 ’TY) is a two form on
Y with values in End(TY'). Also let Fry be the curvature tensor of the bundle TY
with respect to the pulled back Fubini-Study metric w = t*wps. Now by computations
in [PS2, 5.28], we have
Z Z 003> = AT [mp © (Fpegpr—1| ) — Fry],
i=1 j=1

where A is the contraction with the Kéhler form w. The formula [PS2, 5.33] gives

AgTr [7TT o (Fppn—1 =n+1.

|TY)}

On the other hand A;Tr(Fry) is the scalar curvature of the metric w on Y. Since @

has R-bounded geometry, we have
|S(@) — S(wo)| < R.

Lemma 5.2.9 implies that |S(wo)| < C'logk < Ck.
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The only thing we need in addition is the following

Proposition 5.2.11. Assume that there are no nonzero holomorphic vector fields on

Y. Then there exists a constant c;% such that for any & € su(N), we have
CrllmrYel[® < K72 lma eI

Proof. We define a@ = wy + ws. Since there are no holomorphic vector fields on Y,

for any smooth smooth vector field W on Y, we have
clWllZ2@y < N1OW] 22 (q)-
The trivial inequalities ko > wp and k~"wy < o™ < w{ imply that
AWy = [ IWESS <k [ Wia®
< / oW |2a”
< [ W,
= K" oW [ 72z,)-

Hence, there exists a positive constant ¢ depends on R and independent of k, such

that for any wy having R-bounded geometry, we have

C||W||%2(a) < km+1||5W||%2(a})-

Now, putting W = mrYe, we get

cllmrYellZo@) < K 10(mrYe)ll 7o)

On the other hand
lma V112 = Crk™H0(ma V)|,

which implies the desired inequality.
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5.3 Perturbing to a balanced metric

We continue with the notation of the previous section. The goal of this section is
to prove Theorem 5.3.7 which gives a condition for when an almost balanced metric
can be perturbed to a balanced one. In order to do this, first we need to establish

Theorem 5.3.6. We need the following estimate.

Proposition 5.3.1. There exist positive real numbers K; depends only on hy, g

and j such that for any s € H(Y,O(1) ® L*), we have
. ot wh
Vslugy < Kok [ s,
Y .

In order to prove Proposition 5.3.1, we start with some complex analysis.

Let ¢ be a strictly plurisubharmonic function and ¢ be a plurisubharmonic func-
tion on B = B(2) C C™ such that ¢(0) = ¢(0) = 0. We can find a coordinate on
B(2) such that

p(2) = |2+ O(I2]*) and (=) =Y Milzl* + O(l=?),

where )\; > 0. For any function u : B — C, we define u®(z) = u(%).

S

Theorem 5.3.2. (Cauchy Estimate cf.[Ho, Theorem 2.2.3])There exist positive real

numbers C; such that for any holomorphic function u: B — C, we have

|V7ul?(0) < C’j/ lu(2)|?dz A dz

|2|<1
Theorem 5.3.3. There exist positive real numbers c; depends only on j, ¢, and dp
such that for any holomorphic function u: B — C, we have
VIu(0) < ¢k / luf2e=— e dy,
B(1)

where dp is a fized volume form on B.
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Proof. Applying Cauchy estimate to u®), we get

k| VIuf2(0) < cj/ u® (22 A dz

|2|<1

< C/ ) (2) e SOADEP gz A gz,
|2]<1

since e~ XAt i hounded from below by a positive constant on the unit ball.

Using the change of variable w = \/LE we get

k9| VIul?(0) < CE™ / u(w)|2e F QDI gy A d

| <k=1/2

< Ck"/ lu(w)|2e™ EENADIE gy A di,
|w|§k:*1/2

On the other hand, we have

o(2) + kp(2) = kY (N + D)z + p(z) + ko (2),

where lim pz) = lim @ = 0.
TR T TP

Let |w| < k~'/2, we have

ko (w) + p(w)] < c(kjw]® + wl?) < 2¢
for some constant ¢ depending only on ¢ and ¢. Hence
k7 |V ul?(0) < Ck”/ |u(w)[2e” ZEXADIE gy A dig
o] <k=1/2
= CeQCk”/ |u(w)|26_Z(k>‘i+1)|wi|2_2cdw A dw
o] <k=1/2

<O / () [2e= SNl P =) +57(w) gy A i
B Jw|<k—1/2
= Clk:”/ |u(w)|2e~ PR gy A di

lw|<k=1/2

< C,k”/ lul?e™?""dz A dz.
B(1)
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Hence,

[V7u)?(0) < cjk"“/ lu|?e™ " dpu.

B(1)
O
Proof of Proposition 5.3.1. Fix a point p in Y and a geodesic ball B C Y centered
at p. Let ey, be a holomorphic frame for L on B and e be a holomorphic frame for
O(1) such that |lez||(p) = |le|]|(p) = 1. Any s € H’(Y,O(1) ® L*) can be written as

s = ue ® e$* for some holomorphic function u : B — C. We have

Jo — J i Jj—i ®k
Vs Z(JVU@V (e ®ef").
Therefore,
V7s*(p) < CO IVl )|V (e @ 2P (0).

On the other hand we have

[0

Ve @ efMIP(p) < ) _(IV7elP(p) + k2 TIVATeLl*(p) < Cak®.
1=0

Hence
|Vis|?(p) < C'( Z IViu|*(p)k? ™)
Applying Theorem 6.1.2 concluds the proof.
O

For the rest of this section, we fix a positive integer q. We continue with the
notation (Y, wes,wo,wp ) of section 3. In the rest of this section, we fix the reference

metric wy on Y and recall the Definition 5.2.3.

Definition 5.3.4. The sequence of hermitian metrics hy, on O(1) ® L* and ordered
bases s¥) = (sgk), - 555)) for H(Y,O(1) ® L*) is called almost balanced of order ¢
iof for any k

k
SR =1
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and

1

/Y<S(-k), S;k)>hkdUOlhk = D(k)(sij + Mi(f)’

where D) is a scalar so that D% — ny/ny as k — oo (See (5.2) and (5.3).), and

M® is a trace-free hermitian matriz such that ||M®||,, = O(k=971).

We state the following lemma without proof. The proof is a straightforward

calculation.

Lemma 5.3.5. Let the sequence of hermitian metrics hy, on O(1) ® L* and ordered

bases stF) = (sgk), ey SS\];)) for H(Y,O(1)® L*) be almost balanced of order q. Suppose

(5.12) ||k — @olle(@s) = O(K™Y),

where wy, = Ric(hy). Then for any € > 0 there exists a positive integer ko such that
wr > (1 —€)wg for k > k.

Assume that there exist a sequence of almost balanced metrics hj of order ¢
and bases s¥ = (sgk), o sg\,f)) for H°(Y,O(1) ® L*) which satisfies (5.12). As before
wy = Ric(hy). Then Lemma 6.1.4 implies that for k > 0, wy has R-bounded geometry.

Fix k and let B € isu(Ng). Without loss of generality, we can assume that B
is the diagonal matrix diag();), where A\; € R and > A\; = 0. There exists a unique

hermitian metric hp on Opg-(1) @ L* such that

E : 62)\Z~

Let wp = Ric(hg). In the next theorem, we will prove that there exist a constant ¢

sl(-k)]iB =1.

and open balls Uy, C isu(N},) around the origin of radius ck~("+%+2) 5o that if B € Uy,

then hp is R-bounded. More precisely,

Theorem 5.3.6. Suppose that (5.12) holds.

73



o There exist ¢ > 0 and ky > 0 such that if k > ko and B € isu(Ny) satisfies
1B]lop < ck™"HH2)R,
then the metric wg is R-bounded.
o There exists ¢ > 0 such that if B € isu(Ny) satisfies
[1B]op < k4o,

then

HMBHOP < Ck_la

where the matriz M = (M}[)is defined by

B_ ey [ om0 wy 9B Vi
Mij =e J/Y<3i ) Yhp o Nk(sw.

Proof. Let hg = e¥Bhy. So, we have

1= Z 62ki|s§k)|i3 = %8 Z 62’\"|sz(-k)|%k.

Hence

—logZe sgk)\ik —log 1—1—2 1)|s, (k)2 )

If || B||op is small enough, there exists C' > 0 so that

Ny
a k
lesllcar@y < ClIBllop D IV 25 20 )

i=1

and therefore Proposition 5.3.1 implies that

n+a w
rrsosrroa+z@0>scrrBHopk++2Z s

n—+a k; w
—0||B||0pk+“/2|( ;20

wy
= Ul [ = llBlre
Y .
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for some positive constant ¢;. Now if |[Bl|op < ¢ M EZLE~(T02) | then

R—-1
(513) ||¢B||Ca+2(@0) S W
Therefore,
= R-1
1:00¢5llco@y < — 7
which implies that
= R—-1_
(5.14) i00pp > — 5p o

In order to show that wp is R-bounded, we need to prove the following:

(5.15) | — @ol|ca@o) < R,
N 1.
(5.16) wp = R0

To prove (5.15), (5.12) and (5.13) imply that for £ > 0

[|Wp — @ollca@y) < W — Wkllca@,) + l|r — Wollce @)
R—1

< |les|lcat2@) + k< SR + k7t

<R.

To prove (5.16), applying Lemma 6.1.4 with € = % gives

— R+1__
Wi > + wo,

and therefore (5.14) implies

— 1_ — = 1. . R+1__
WB_EWO:wk‘f‘ZaaQOB_EWOZWk_ ; wo = 0,

for k> 0.
In order to prove the second part, by a unitary change of basis, we may assume

without loss of generality that the matrix M is diagonal. By definition
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where
—onWB
F=e%—.
Wk
We have
W Vi
B _ 2\ 2 Wi k
M;; =e /Fl il oy = 0
Y ! k

w n
= [Pl 2~ [ 1s 2 ),

) w
- /Y (@M F ~1)lsif, >

| o |
|MZ| < |e* F = 1]oo( s [silf, 1) + 1O )ii] < O] F = 1]

oy
_l’_
—

=

=

S—
S

Therefore,

—~n

Define f = —2—. If || B|lop < k~"+*+3), then
Wk

f—1]= \“’B O o

and

[(e*47#7 —1)| = O(k™).

Therefore,

Wp
1| = [[e*her =5 Ik w = Ul = [l f —1]]

e F —
<@ —1)(f = DI+ I - D

+ (e —1)]]

which implies that
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Theorem 5.3.7. Suppose that the sequence of metrics hy on O(1) @ L¥ and bases

Fo= (s ..., s%) for HY(Y,O(1) @ L*) is almost balanced of order q. Suppose that

IV

(5.12) holds for
Wy, = Ric(hy) and wy = Ric(hy) — kweo.

If > +n+a+5, then (Y,0(1) ® L*)admits balanced metric for k > 0.

Proof. Let R > 1 and k be a fixed large positive integer. Let o € isu(N), where
N = Ny = dmH(Y,0(1) @ LF). If ||o||op < Sk~Fa*3 R, then Theorem 5.3.6
implies that e”s has R-bounded geometry and ||M?||,, < € for k > 0, where € is
the constant in the statement of Theorem 5.2.4. Thus, Theorem 5.2.4 implies that
A(e?s®)) < Ck?™*+2 = X\. With the notation of Proposition 5.1.3, we have pu(z) =

M®) Therefore

! m

l1(z0)| = [MP] < V/N|| MW op < CRE1

Letting § = £k~ R we have A|u(20)| < dif ¢ > 2 +n+a+5 and k> 0.
Therefore if ¢ > 57"‘ +n+a+5and k> 0, we can apply Proposition 5.1.3 to get

balanced metrics for k£ > 0.

5.4 Asymptotic Expansion

The goal of this section is to prove Theorem 1.3.2. Theorem 1.3.2 gives an asymptotic
expansion for the Bergman kernel of (PE*, Opg-(1) ® 7*L*). We obtain such an
expansion by using the Bergman kernel asymptotic expansion proved in ([C], [Z]).
Also we compute the first nontrivial coefficient of the expansion. In the next section,
we use this to construct sequence of almost balanced metrics. We start with some

linear algebra.
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Let (X,w) be a Kéhler manifold of dimension m and E be a holomorphic vector
bundle on X of rank . Let L be an ample line bundle on X endowed with a Hermitian
metric o such that Ric(o) = w. For any hermitian metric h on E, we define the volume

form

—1
w; 7_‘_>o<u)m

d p—
Po =0 10 " Tl

where g = h wy = Ric(g) = Ric(h) and 7 : PE* — X is the projection map. The goal
is to find an asymptotic expansion for the Bergman kernel of Opp-(1) ® LF — PE*

with respect to the L2-metric defined on H*(PE*, Opg-(1) @ 7* L*). We define the L2

metric using the fibre metric g ® ¢®* and the volume form dyu, ; defined as follows

(wg+kw m+7" 1 Zm: m+,, 1=j wl

517 dptgy, = k™" A=
(5.17) Hok (m+r—1)! m-i-?”—]) J!

=0

In order to do that, we reduce the problem to the problem of Bergman kernel
asymptotics on £ ® L¥ — X. The first step is to use the volume form dpu, which is a
product volume form instead of the more complicated one dji ;. So, we replace the
volume form dp, ) with du, and the fibre metric g ® o with g(k) ® o*, where the

metrics g(k) are defined on Opg-(1) by

(5.18) g(k) = k" QK f1)g = (o + K fonor + o 67" fo)g,
and
w;n+7*71—j wj

Clearly the L*-inner products L?(g®0c*, du, 1) and L?(g(k)®0*, du,) on H*(PE*, Opp-(1)®
7*L¥) are the same. The second step is going from Opp«(1) — PE* to E — X. In
order to do this we somehow push forward the metric g(k) to get a metric g(k) on
E (See Definition 5.4.4). Then we can apply the result on the asymptotics of the

Bergman kernel on E. The last step is to use this to get the result.

78



Definition 5.4.1. Let Qf, ey s/’?N be an orthonormal basis for H*(PE*, Opg-(1)@7* L)

w.r.t. L*(g® o* du.,). We define

N
(5.20) pe(g.w) =Y |sF 2.
i=1

Definition 5.4.2. For any (j,j)-form « on X, we define the contraction A o of «

with respect to the Kdahler form w by

m)! i - m

In this section we fix the Kéhler form w on X and therefore simply denote A/«

by Aa.

Lemma 5.4.3. Let vy be a fixed Kdhler form on X. For any positive integer p there

exists a constant C' such that for any (j,j)-form ~, we have

C

(Il lero) + 1A er-100) O 11wl lm(ue))-

VANl < infrex [w(2)™ v () —
Proof. Let v be a (7, j)-form. By definition, we have
) ! )
(Ay) W™ = —(mni.j)!v Awm .
Therefore for any positive integer p, we have
, m) A
VP(Ny) w™) = (m—_j),vp(V Aw™).
Applying Leibnitz rule, we get
Zp: (p) V(A7) VP ™ = L‘ z”: (p) Viy A VPTiym™,
— \1 (m —j)! — \1

Thus there exists a positive constant C” so that

IV (AT )™ o) < C (™ [ler @) 1A |er-1 ) + 1 lor o o™ [lerg) )
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On the other hand there exists constant ¢, ; such that for any any 0 < j <m — 1,

™ |y < Cp,JHWHcp(VO) = Cpy Z HWHCP (v0)

Hence there exists a constant C such that

- C
VPN <

infex [w(2)™ ()

(Illerwo) + 1A Yl on-10) ZHWHCP w))-

=1

O

Definition 5.4.4. For any hermitian form g on Opg«(1), we define a hermitian form
g on E as follow

wrfl

(5.21) (s, t) =C /PE; 9(s, t)m
for s,t € E,. (See (2.7) for definition of C..)

Notice that if g = h for some hermitian metric h on E, Lemma 2.5.2 implies that

g = h. Define hermitian metrics g;’s on E by

(5.22) Gn=ct [ 1960
for s,t € E,. Also we define V; € End(FE) by
(5.23) 3 = Uh.

Proposition 5.4.5. Let vy be a fized Kahler form on X as in Lemma 5.4.53. For any
positive numbers | and I' and any positive integer p, there exists a positive number

Crvp such that of

[[wllerwo), [A]lert2wy) <1

and

> I
;gf( |w (@)™ ‘l/o(:fc) >,

then

|[Willer(e) < Crrp for any 1 <i < m.
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Proof. Fix a point p € X. Let ey, ..., e, be a local holomorphic frame for £ around p

such that
(ei,e;)n(p) = di5,  d{ei,ej)n(p) =0
and
wp 0 0
nw-|
0 0 - w,

Let A, ..., A\, be the homogeneous coordinates on the fibre. At the fixed point p,

we have

> wil Al
Wy = Wrs,g t+ W

Therefore,

r+j—1 m—j __ r+j5—1 r—1 ZWZ’)VP J m—j
wg J A\ w J—( r—1 )WFS’Q/\<W) A w ].

Definition of f,,_; gives

r— m m r— Zwl|)\1|2 j m—j
fm—ng 1/\(,() = (j)wg 1/\((w)]/\w J)

Hence

2

r—1 m m r—1 < Zwt|)‘2| J m—j)
i N = . A —Z A\ .
f jWrsg N\ W <J>wFS’g ( |)\i|2) w

Therefore,

_ m m wi|Ag 2. m—j
i (s~ (7) Gy ) o

which implies
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m sz‘|>\z‘|2 J —j
m—j = . =) AWt
Sm—jw (j)(2|/\z|2) w
(m) Zjl+..~+jr=j (jl,.]-.,jr)wil Ao A w£T|A1|2j1 - |>\r|2jT A W™
j ' |

2 [Af?)?

Simple calculation gives

)

/ a2l N Prtdd A dY Gl el (Ja + 1)
cr-1 (14 3200 (A2t (r+7)!

when j; +---4+ 7. =jand 1 < a <r. Hence

wr—l

(5.24) §m_j(6a, ea) = Cr_lﬂ* (fm—jg(ér\l? é;) (7“ i 1)|)

| . . .
= DN (Y Gat Dl A AwE),

!
(r+7)! Juthir=j

From the theory of symmetric functions, one can see that there exist polynomials

P;(xq,...,xz;) of degree i such that
Uy = N (F 4 Per(h), o () EL T+ oo Piler(R), .. 5(R)),

where ¢;(h) is the i th chern form of h. Since ||h||cr+2(,,) < [, there exists a positive

constant ¢’ such that
|E] + -+ Pi(ci(R), .., ci(B) ey < (14 1)
Therefore Lemma 5.4.3 implies that
C m
VPl < 7 (e A AWl lor10) (L + D™,

since

m > !
mlg)fclw( )" vo(zy =1

and
m

> 1wl o) Z (1+Dm
=1
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On the other hand

Wmillerwo) = IV W + [ Wil [or-1 )

C ; m
< (@D A+ Wnojllor-100) (L + D™ + ([ Wil lor-1(0)-

Now we can conclude the proof by induction on p.

Lemma 5.4.6. We have the following
1. v, =Ig.

2. \I[m—l == (TT(AFh)IE + AFh>

i
2n(r+1)
Proof. The first part is an immediate consequence of Lemma 2.5.2 and the definition
of ¥,,. For the second part, we use the notation used in the proof of Proposition
5.4.5. It is easy to see that for o # 3, we get gm_1(€a,e5) = 0. On the other hand

by plugging 7 = 1 in (5.24), we get

I 1

gm—l(eaa ea) - (7”

The following lemmas are straightforward.
Lemma 5.4.7. g/g;f -
Lemma 5.4.8. Let s1, ...,y be a basis for H(X, E). Then
SIS DE = Tr(BACS b)),

where B =55 @ s;".
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Proof of Theorem 1.3.2. We define the metric h(k) on E by
(5.25) h(k) =Y k"G = (D K "T))h.
=0 J=0

Let By(h(k),w) be the Bergman kernel of F ® L* with respect to the L2-metric
defined by the hermitian metric h(k) ® o* on E @ L* and the volume form <7 on X.
Therefore, if sy, ..., s is an orthonormal basis for H°(X, E ® L¥) with respect to the
L*(H(k) ® o",“3), then

(5.26) Bi(h(k),w) =D si @5, 0",

We define By, (h,w) as follow

(5.27) By (h,w) = Z 5 ® 5,17

Let 51, ....,55 be the corresponding basis for H*(PE*, Opp- (1) ® L¥). Hence,

/ SR P / (5 53)gort (O K £;)dtg
PE* PE* =0

wm

_/ <3Az',§}>g(k)®akdﬂg = Cr/ <5i73j>h(k)®ak_| = Cy0i5.
PE* X m!

Therefore \/%57, ey \/%5;7 is an orthonormal basis for H*(PE*, Opp-(1) ® L*) with

respect to L?(g @ o”, duy. ). Hence Lemma 5.4.8 implies
OTPk:(Q) =Tr (A(U*u h)ék(h’ w)) :

Now, in order to conclude the proof, it suffices to show that there exist smooth

endomorphisms A; € I'(X, F) such that
Bi(h,w) ~ k™ 4+ A k™ 4

Let By(h,w) be the Bergman kernel of £ ® L* with respect to the L*(h ® o%). A
fundamental result on the asymptotics of the Bergman kernel ([C], [Z]) states that

there exists an asymptotic expansion

Bi(h,w) ~ k™ + By(R)k™ ' + ...,
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where

i 1

(See also [BBS],[W2].) Moreover this expansion holds uniformly for any A in a
bounded family. Therefore, we can Taylor expand the coefficients B;(h)’s. We con-

clude that for endomorphisms &4, ..., ®,,,
M
Bi(h(I + Y k™), w) ~ k™ + By (h)k™
=0

Note that Bi(h) in the above expansion does not depend on ®;’s and is given as

before by
i

1

On the other hand

m

Biu(h(k),w) = Y si @5, %" = (3 s, @ 573 Km0y
7=0
= Bi(h,w)()_ K m;).
7=0
Therefore,
|53 _ =~ Jj—m —1 m m—1
Bi(h,w) = Bi(h(k),w)(D K "0;) " ~ k™ 4 (By(h) = o1 )™ 4
7=0

Notice that Proposition 5.4.5 implies that if A and w vary in a bounded family and
w is bounded from below, then Wq,.., ¥, vary in a bounded family. Therefore the
asymptotic expansion that we obtained for Ek(h,w) is uniform as long as h and w

vary in a bounded family and w is bounded from below.

O

Proposition 5.4.9. Suppose that wo € 2mci(L) be a Kdihler form with constant

scalar curvature and hyg be a Hermitian-FEinstein metric on E, i.e.
AWOOF(EahHE) = plg,
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where 1 15 the we—slope of the bundle E. We have

d _
A171 = = t—oAl(hHE([ + t¢), Woo T Ztaa?’])

r+1
T

— (A T0®) + AL_(Fi, A (D0n),

D Dnlp + 5= (A 80D + A2 (B A (000)))

where D*D is Lichnerowicz operator (cf. [D3, Page 515]).

Proof. Define
F(@) = Do itoon (e (1+10))
Therefore, we have

M s (1116)) N (Woo + 800N) ™1 = f(t)(weo + 1tDON)™.

Differentiating with respect to ¢t at ¢t = 0, we obtain

moOP A w™ ™ +m(m — 1) Fl, A (1000) Aw™ ™2 = f/(0)w™ + mf(0)(i00n) A W™t
Since f(0) = plg, we get
f/(0) = Ay 80P + A2_(Fhyyy A (i00n)) — pAy, (1000) I

On the other hand (cf. [D3, pp. 515, 516].)

— itdon) = D*Dr.
o t:OS (Woo + 100N n

]

Proof. First, notice that I'o(End(E)) = Loo(End(E)) @ C°(X), where L'gg(End(E))

is the space of trace-free endomorphisms of £ and C§°(X) is the space of smooth
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functions 7 on X such that fX nw? = 0. Assume that A;;(®,n) = 0, where ¢ €

Loo(End(E)) and n € C5°(X). Hence

r+1
2r

o (A0 D0P 4 A2 (o A (1000))) — (Ao TO) + A2,_(Fi, A (1300))) = 0

™

D*Dn =0, and

Since Aut(X,L)/C* is discrete, the first equation implies that n is constant and

therefore n = 0. So, the second equation reduces to the following
_ 1 _
A, 00D — —tr(A,.00P) =0
r

It implies that
A, 00® =0,

since ® is traceless. Hence simplicity of £ implies that & = 0 (cf. [K]).

In order to prove surjectivity let U € I'o(End(F)). We know that the map
ne C® — DDy e Cf°

is surjective since Aut(X,L)/C* is discrete (cf. [D3, pp. 515, 516]). Hence we can

find g such that D*Dny = tr(¥). On the other hand

A2 (Fo A (iD0mp)) — %tr(AQ (Fh. A (i000))) + 0 — %tr(\ll) € To(End(E)).

%( Woo Woo

The map
o € To(End(E)) — QLA%OE@@ € To(End(E))
T

is surjective since E is simple. Hence, we can find ¢, such that A; 1(¢o,nm0) = V.
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5.5 Constructing almost balanced metrics

Let ho be a hermitian metric on L such that we, = Ric(ho) be a Kahler form with
constant scalar curvature and hyg be the corresponding Hermitian-Einstein metric
on F, ie.

AwooF(E,hHE) = /*LIE'a

where p is the slope of the bundle F. Let wy = Ric(fTHTE). After tensoring by high
power of L, we can assume without loss of generality that wy is a Kahler form on PE*.

We fix an integer a > 4. In order to prove the following, we use ideas introduced by

Donaldson in ([D3, Theorem 26])

Theorem 5.5.1. Suppose Aut(X, L) is discrete. There exist smooth functions ny, 1, ...
on X and smooth endomorphisms ®1, P, ... of E such that for any positive integer q
if

Vig = Weo + 288(2 kijﬂj)

j=1
and
q .
hig = hup(Ip + Y k7 ®)),
j=1
then
- C,N,

(5.28) Bi.(hrg, Vkg) = /F—’”‘Z(IE + ),

where ||6,||ca+z = O(k™77) and Vi, = Vol (PE*, Opp«(1) ® L) is a topological invari-

ant.

Proof. The error term in the asymptotic expansion is uniformly bounded in C%*2 for

all h and w in a bounded family. Therefore there exists a positive integer s depends
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only on p and ¢ such that

(5.29) Ay(h(1 + ®),w +1i00n) = A,(h,w) + i A, (P,n)

j=1

+O(l[(@, e,

where A, ; are homogeneous polynomials of degree j , depending on h and w, in ®
and 7 and its covariant derivatives. Let @4, ..., ®, be smooth endomorphisms of F

and 71, ..., 7, be smooth functions on X. We have
q q
(5.30) Ap(h(1 4 k7®;),w 400 _ kn;))
j=1 j=1

q
= Ap(hw) + Y by k™ + Ok,

Jj=1

where b, ;’s are multi linear expression on ®;’s and 7;’s.

Hence
d q . —_— q .
(5.31) Bi(h(1 4> k7®;),w +1i00() _ k/n;))
7j=1 7j=1

= k" + Ay (b, W)™ 4

+ (Ay(h,w) +bg—11 + ..+ b1 1) K™+ O(km*qfl)'

We need to choose ®; and 7; such that coefficients of £™,...k™? in the right hand side
of (5.31) are constant. Donaldson’s key observation is that 7, and ¢, only appear in
the coefficient of £ in the form of Ay 1(¢,,n,). Hence, we can do this inductively.
Assume that we choose 11,7, ..m,-1 and @1, P, ..., $,_; so that the coefficients of
k™, ...k™ P! are constant. Now we need to choose 7, and @, such that the coefficient

of k™~P is constant. This means that we need to solve the equation
(5.32) A11(Pp, mp) — cplp = By,

for ®,,n, and the constant c,. In this equation P,_; is determined by ®;,...,®,_;

and 71, ..., Mp—1. Corollary ?? implies that we can always solve the equation (5.32).
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Proof. Let giq = E:q. By Theorem 5.5.1, We have

Ny,
k—mV,
Ny,

= = (14 Tr(AV", hrg)dy)))-

Pk (Ghgs Vig) = TrAv*, hyq)(Ig + 6,))

The first part of corollary is proved, since hy,, is bounded and || 4||carz = O(k~771).
Define wy = wy + kws. For the second part, we have
||lwgy,y + Kvkg — (wWo + kwoo)|[ca(@) < [lwg,,, — wollca@s) + Kl|vig — wool oo @)
< lwg,,, = wollcewo) + KlIVrg — Woolloe (k)
= [lwgi, = wolloawo) + Vg = Woolloawnc)
=O0(k™).

Notice that by definition, we have

ngk,q - wOHC‘Z(wo) = O<k71)>

Vg — Wool| o) = O(kT1).

5.6 Proof of Theorem 1.3.1

In this section, we prove Theorem 1.3.2. In order to do that, we want to apply
Theorem 5.3.7. Hence, we need to construct a sequence of almost balanced metrics
on PE*, Opp-(1)® L®*. Also, we need to show that PE* has no nontrivial holomorphic

vector fields.

Proposition 5.6.1. Let E be a holomorphic vector bundle over a compact Kdhler
manifold X. Suppose that X has no nonzero holomorphic vector fields. If E is stable,

then PE* has no nontrivial holomorphic vector fields.
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Proof. Let T'F' be the sheaf of tangent vectors to the fibre of 7. We have the following

exact sequence over PE:

0—-TF—-TPE" - 1m*TX — 0.
This gives the long exact sequence
0 — HY(PE*,TF) — H(PE*, TPE*) — H*(PE*, m*TX) —
Since H(PE*, 7*TX) = 0 , we have
HY(PE*,TF) ~ H'(PE*, TPE*)

On the other hand, 7, T F may be identified with the sheaf of trace free endomorphisms

of E. Therefore by simplicity of E (cf. [K])
HY(PE*,TF) ~ H(X, =, TF) = 0.
[

Proof of Theorem 1.3.1. Since Chow stability is equivalent to the existence of bal-
anced metric, it suffices to show that (PE*, Opg«(1) ® 7* L*) admits balanced metric
for £ > 0. Fix a positive integer ¢q. From now on we drop all indexes ¢ for simplic-
ity. Let o, = o, be a metric on L such that Ric(oy) = v, where v, = vy, is the

one in the statement of Theorem 5.1.2. Let ¢1,...,ty be an orthonormal basis for

(wgk +kyk)m+r—l
(m+r—1)!

N
Z| il goer = <1+ek)

Define g, = X—’;(l + €x) 'gx. We have

2 —
Z |ti|g;€®a;§k =1

HO(PE*, Opp-(1) @ LF) wrt. L2(gr@0opF, ). Thus, Corollary ?7? implies
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This implies that the metric g, is the Fubini-Study metric on Opg-(1)® L* induced by
the embedding ¢; : PE* — PN~1 where t = (¢, ...,tx). We prove that this sequence

of embedding is almost balanced of order ¢, i.e

(wg/ + kyk)m‘i”f'*l

Y, k — DW®g.. g
/PE*<t“t]>gk®U;i®k (m+r—1)! D0y + My,

where M®) = [M;;] is a trace free hermitian matrix, D® — C, as k — oo and

1M op = O(k=471).

m+r—1
M® :/ {tists) g goon g, + k)
K e IO (o —1)!
w +I{?I/ m+r—1
_ _/ <ti7tj>gk®a®k( Ik k)
Nk PE* k (m —|— r — 1)'

B + kyk)m-l-r—l
=2t 1 N
T [t (14 ) - LR

Y

where

(wg;c + ]Cl/k)m—H_I = fk(wgk + kZVk)m—Hq_l.

By a unitary change of basis, we may assume without loss of generality that the

matrix M® is diagonal. Thus
Vi _
MOl < 5711+ €)™ = 1]z
k
On the other hand,

lwy, — wollcoqws) = 1100 10g(1 + x)llco )
< [[og (1 + )l c2wo)-
< —log(1 = Cllexllc2(wn))

= O(k™).
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Therefore,

wW/H*T‘*l wmtr—1 wn}ﬂ“fl —mtr-l e
| |f 1 | | . ‘ 9y 9k ‘ . ‘ 9y, 9k wO
k= oo — - 1
wmtr—1 merr wmtr—1
9k 0 9k
m+r—1
< Ok—a1 Y
- wmtr=1|
Ik

This implies that

15 = Ul < CETI,

m—+r—1
since % is bounded. Hence
wgy,
Ife(l+e) ™t =1 < ChT
Therefore

1M ®|op = Ok™7).

Proposition 5.6.1 implies that PE* has no nontrivial holomorphic vector fields.

Therefore, applying Theorem 5.3.7 and (?7) conclude the proof.
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Chapter 6

One Dimensional Case

6.1 Almost balanced metrics

In this section, we start with a sequence of balanced metrics h* on E ® L¥. Then we
prove that the sequence of metrics h* on Opp+(1)) ® L* are balanced up to an error
term which is exponentially small as & becomes large. This is the content of Theorem
6.1.6.

As before let (X, wp) be a compact Kéhler manifold of dimension n and (L, g) be
an ample holomorphic hermitian line bundle over X such that Ric(g) = wy. Let E be
a holomorphic vector bundle of rank r and degree d over X. We also assume that F
is very ample.

We have the following theorem due to Catlin and Zelditch.([C], [Z])

Theorem 6.1.1. If s§,....s%, be an ONB for H*(X, E® L*) with respect to the inner

product
wn

(5:8) = [ {s(a). ) asgor 2,

then we have the following complete asymptotic of the Bergman kernel
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Bi(h) =) sf@(sf)" = k" + Ak" " + .

The relation between stability and the existence of balanced metrics comes from

the following theorem of Wang.

Theorem 6.1.2. ([?],[W2, Theorem 1.2]) The bundle E is Gieseker stable if and
only if there exists balanced metrics h* on E ® L* for k > 0. In addition if there

exists a Hermitian metric hoo on E such that hy, — hs, then

i 1 d 3
AR, = S(wa) s = <— —>1 ,
o M) + 55 Weo) i = (7 45 ) L

where hy = h* @ gt ™, S(weo) is the scalar curvature of we and s = 7 [ S(wm)%

. Conversely, if ho solves the above equation, then hy — hso.
One can say more in the following special case

Theorem 6.1.3. Assume X is a compact Riemann surface and ws is a Kahler form

of constant curvature on X. Also assume that

l
—F, = Weolp.

Then

1A = hoollc2(hag) = O(K™).
The proof is straight forward from following lemmas.

Lemma 6.1.4. Assume that Ay, ...A, are constant and E s stable. If q is big enough,

then there exists a sequence of balanced metrics h* on E @ L¥ for k > 0 such that

_ 13n a
||h_hk®g®( k)“Ca(h) _ O(k3+ 5 t+5 ‘1).
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Proof. First we claim that
k
Bk(h) = %([}5 -+ O’k),

where ||og||ca = O(K"971).
In order to prove this, we observe that there exists a smooth section A(z) of

End(E) such that
Bi(h) = k" + Ajk" L L+ AT 4 AR

The bundle E is stable and A;’s are constant sections of End(E). Therefore there
exist numbers ay, ..., a, such that A; = a;Ig. On the other hand

n

/X r(Bu() 2 = x(R)V;

n!

where V' = f X %" Therefore

Bu(h) — fn(—‘];)IE = (A) - % /X Ala)Ig ) k1

Define h(k) = h, we have

Bu(h(k) = X (1 4 0y,

where [|o||ca = O(k"771). Now Wang’s argument ([W2, page 276]) implies that

1
” Ewk — Weo HC“(woo): O(

Lo trtl-a)
]

Lemma 6.1.5. In the situation of Theorem 6.1.3, all coefficients A;’s are constant.

Using canonical isomorphism H°(PE*, Opg-(1)) = H°(X, F), any hermitian met-
ric h on E ® L* gives a Hermitian metric h on Op-(1) ® L*. The main goal of this

section is proving the following
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Theorem 6.1.6. Assume X is a compact Riemann surface and wy is a Kahler form

of constant curvature on X. Also assume that

— = WeolE.
o (E,hoo) WeolFE

Let s(lk), - SX;Z be a basis for H(X, E ® L®*) such that

Ny
> st @ () = 1d
i=1
B (k rVol(X, we)
/X<sl( ),55» )>h<k)woo = Tézj.

Then

/P i (s, s") = dVol o = Dyl + Mj,

where DkaVT’Z — 1 as k — oo and M; is a traceless Hermitian matriz such that
1Mellop = o(k~%). Here Vi = [, (Og-(1) © LF'.

Let V be a complex vector space of dimension r. Recall that there is a natural
isomorphism ": V' — H°(PV*, Opy«(1)), which sends v € V to © € H'(PV*, Opy+(1))
so that for any f € V* 0(f) = f(v). Also any hermitian inner product h on Vinduces

a hermitian metric & on HO(PV*, Opy-(1)). We have the following.

Lemma 6.1.7. Let hy and h be Hermitian inner products on V. If ||h — hol|n, < €,

then ||h — lAoncz(im) <e
Lemma 6.1.8. Let X be a Kahler manifold of dimension n and wy and w be two

Kdhler forms on X. If ||lw — wol|cowy) < €, then | | < en
Proof. ]

Proposition 6.1.9. If ||h — hol|n, < €, then for any v,w € V', we have

% WFShO
- C, <€V
| [ o)yt — o] < € Vinlafo

where V' is the volume of the projective space with respect to the standard Fubini-Study

volume form.
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Proof.

wh
o FSh
‘/ 0, ) O—Cr<v,w>h‘
PV

(r—1)!
=| [, o0 <WF——1> - [, o ;ﬁ»‘

r—1

A* Aﬁ%_;ﬂw
[l

/ 0131015520 < & [oalwlaV
e

7“—1)! (r—1)!

— r—1
WFS,hO Wgsh ‘

]

Let (X, ws) be a Kéhler manifold of dimension n and E be a holomorphic vector
bundle on X of rank r and degree d. The slope of E is defined by p = d/r.
Similar to the case of vector spaces, we have the natural isomorphism H°(PE*, Opg- (1)) =

H°(X, FE). Also, for any Hermitian metric » on F, we have a Hermitian metric h on

Opi- (1),

Lemma 6.1.10. Let hy and h be Hermitian metrics on E. If ||h — hol||c2ne) < €

then ||l — ho|lagiyy < €

Proof. Without loss of generality, we can assume that £ = X x C" and h, is the
standard metric on C". Let eq, ..., e, be the standard basis for C" and &, ..., & be the
homogenous coordinate on P"~'. Let h;; = h(e;, e;) and €; = h*/ — §;;. There exists
a function ¢ on PE* such that h= e“"hAO. We have
> &&hY > &€ )

> 1&I 2l&lP

Define the function f(z,£) = % Hence, there exists a constant C' such that

p = —log —10g<1+

|plce = [log(1 + f)lce < log(Ll+ C|flce) < C'|flce-
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Now since ||k — ho||c2(ne) < €, we have |€;j]c2 < € which implies that |f|c2 < C'e.

O

Let h be a metric on E and sy, ..., sy be a basis for H°(X, E). Let s, ..., sy be

the corresponding basis for HY(PE*, Opg-(1)). Assume that we have

wo rVol(X, we)
e

One would expect that the matrix [[;.(5;, §;);dvol;] be close to a scalar matrix.

Indeed, we can prove it in some special case.

Proposition 6.1.11. Let hy, be a Hermitian metric on E such that iF},_ = pwsld,

where = d/r. If [|h — hool|c2(no) < €, then

LTV ol( X, wao)

) / (51, 8))pdvolz — C'C,_ypn =220l 5 | <
]PJE* N

(" Wol(PE*) + C' e V1 Vol (X)) max [s;(2) 5
where C" is a constant depends only on 7.

Proof. Fix a point p in X. Let ey, ..., e, be a holomorphic local frame for E such that
at the point p, hoo(es, €5) = 055 and dhoo(e,¢;) = 0. Any e* € B can be written as
e* = > &er. So, we have a local coordinate &1, ...§,_1 on fibres. Direct computation
yields

A&y NdEG N o Ny NdE W

dvol.— = C' " A Yoo
YO T H 1+ 1ER) n!

Put C' = C’u™. Therefore,

/ <3Az‘,§j>@dvol@ :OCT_1/<Si7sj>hoodU01hoo'
PE* X

Now, we have

(X
’ / (5, 5)zdvol; — CCT_IM@.
]IDE* N
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= ‘/ <<§\Z’,§\j>ﬁd’(]0lﬁ_CCT_1/<Si,Sj>hdUOlhoo‘
PE* X

<|[ (s~ [ G5l
PE* PE* >~
—i—‘/ <§i,5Aj)7ldvolﬁ;—C’C’T_l/(si,sj>hdvolhm‘
PE* X

< / ‘(SAZ, SAJ);L‘ )dvolﬁ - dvol@‘
PE*

(si,85)ndvoly, )

~ ~\ WFSh
—i—)C/ S5, 8:) —=dvoly,, — CC,_ /
. 50 SR vl '

X

-1

~ ~\ WFSh
©21/h 700_7’—1'7‘(1[‘
+C‘/X</Fibre<s 5]>h(,r,_1)! Cr_1(s s])h> voly,.

/ |Si|h\sj\hdvolhoo‘
X
< (" WVol(PE*) + Ceé 'Wpr-1 Vol (X)) max |s;(2)]}

dvol;;, — dvolg; ‘

&5

< " T max |s;(2)|*Vol(PE*) + CVpr1e™™!

[]

Corollary 6.1.12. Let ty,...,ty be a basis for H'(X, E® L®*) and h be a Hermitian

metric on E ® L such that

Wi rVol(X, we)
[ttt = s

Let ty, ...ty be the corresponding basis for HO(PE*, Opp- (1) ® L®*). If ||h® g —

hoollc2(hoo) < € then

. Vol(X, wee
/P  {Ei G)gdvoly CCMT‘)(M—’”)(SM <

(T VOl(PE", Opp- (1) © L) + C& Wor1Vol(X)) max |ti() [
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Proof. Put wo, = (k+ 1)ws and ﬁ:o = hoo ® ¢®*. We have,

Ak

iFy = iFh + hwsel = =

Woold = p'w Id.

On the other hand, ||h ® ¢®"® — hy||c2(n..) < € implies that |[h — onH(ﬂ(hN) < e
Applying the previous proposition gives the estimate.

]

Proof of Theorem 6.1.6. We define w*) = Rz’c(@), Wy = Rz’c(ﬁk) and w = Ric(ﬁoo).

Let sgk), - 35\12 be the corresponding basis for HO(PE*, Opp- (1) ® L®*). The equation
N
> s @ (sye = 1d
i=1

implies that
W2
Z |Si |];(—k\) - 1

By Theorem 6.1.3, we have ||hy — hool|c2(h.) = O(k™°), since wo, has constant

curvature. So Corollary 6.1.12 implies

5| = Ok,

— dvol

® O m - Vol(PE*, Opp- (1) ® L®F)
PE*(%’ »Sj >h<k> Ak N,

101



Bibliography

[A]

[BBS]

[BD]

(D3]

Aubin, Thierry. Equations du type Monge-Ampére sur les variétés
kihlériennes compactes. (French) Bull. Sci. Math. (2) 102 (1978),no. 1, 63—
95.

R. Berman, B. Berndtsson, J. Sjoestrand, A direct approach to Bergman

kernel asymptotics for positive line bundles, arXiv:math/0506367v2

D. Burns and P. De Bartolomeis, Stability of vector bundles and extremal

metrics, Invent. Math. 92 (1988), no. 2, 403-407.

D. Catlin, The Bergman kernel and a theorem of Tian, in Analysis and geom-
etry in several complex variables (Katata,1997), 1-23, Birkhduser, Boston,

Boston, MA.

S. K. Donaldson, A new proof of a theorem of Narasimhan and Seshadri, J.

Differential Geom. 18 (1983), no. 2, 269-277.

S. K. Donaldson, Anti self-dual Yang- Mills connections over complex alge-
braic surfaces and stable vector bundles, Proc. London Math. Soc. (3) 50

(1985), no. 1, 1-26.

S. K. Donaldson, Scalar curvature and projective embeddings. I, J. Differ-

ential Geom. 59 (2001), no. 3, 479-522.

102



[D4]

[D5]

[D6]

[DKLR]

S. K. Donaldson, Scalar curvature and projective embeddings. I1,Q. J. Math.

56 (2005), no. 3, 345-356.

Donaldson, S. K. Remarks on gauge theory, complex geometry and 4-
manifold topology. Fields Medallists’ lectures, 384-403, World Sci. Ser. 20th
Century Math., 5, World Sci. Publ.,River Edge, NJ, 1997.

S. K. Donaldson, Some numerical results in complex differential geometry

arXiv:math/0512625v1 [math.DG]

M. R. Douglas; R. L. Karp; S. Lukic and R. Reinbacher, Numerical solution
to the Hermitian Yang-Mills equation on the Fermat quintic. J. High Energy

Phys. 2007, no. 12, 083, 24 pp.

D. Gieseker, On the moduli of vector bundles on an algebraic surface, Ann.

of Math. (2) 106 (1977), no. 1, 45-60.

Y.-J. Hong, Ruled manifolds with constant Hermitian scalar curvature,

Math. Res. Lett. 5 (1998), no. 5, 657-673.

Y .-J. Hong, Constant Hermitian scalar curvature equations on ruled mani-

folds, J. Differential Geom. 53 (1999), no. 3, 465-516.

Y.-J. Hong, Gauge-fixing constant scalar curvature equations on ruled man-
ifolds and the Futaki invariants, J. Differential Geom. 60 (2002), no. 3,

389-453.

L. Hormander, An introduction to complex analysis in several variables.
Third edition. North-Holland Mathematical Library, 7. North-Holland Pub-

lishing Co., Amsterdam, 1990. xii+254 pp.

103



[KN]

[51]

[52]

G. Kempf and L. Ness, The length of vectors in representation spaces, in Al-
gebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen,

1978), 233243, Lecture Notes in Math., 732, Springer, Berlin.

S. Kobayashi, Differential geometry of complex vector bundles. Publications
of the Mathematical Society of Japan, 15. Kan Memorial Lectures, 5. Prince-

ton University Press, Princeton, NJ; Iwanami Shoten, Tokyo, 1987. xii+305

bp.

H. Luo, Geometric criterion for Gieseker-Mumford stability of polarized

manifolds, J. Differential Geom. 49 (1998), no. 3, 577-599.

I. Morrison, Projective stability of ruled surfaces, Invent.Math.56 (1980),

no. 3, 269-304.

D. H. Phong and J. Sturm, Stability, energy functionals, and Kahler-Einstein

metrics, Comm. Anal. Geom. 11 (2003), no. 3, 565-597.

D. H. Phong and J. Sturm, Scalar curvature, moment maps, and theDeligne

pairing. Amer. J. Math. 126 (2004), no. 3, 693-712.

J. Ross and R. Thomas, An obstruction to the existence of constant scalar

curvature Kéahler metrics, J. Differential Geom. 72 (2006), no. 3, 429-466.

Y. Sano, Numerical algorithm for finding balanced metrics, Osaka J. Math.

43 (2006), no. 3, 679-638.

R. Seyyedali, Numerical Algorithm in finding balanced metrics on vector

bundles. Submitted. arXiv:0804.4005v1 [math.DG]

R. Seyyedali, Balanced metrics and Chow stability of projective bundles

over Kahler manifolds. Preprint.

104



[T1]

[T2]

[UY]

[Y2]

[Zh]

G. Tian, On Calabi’s conjecture for complex surfaces with positive first

Chern class, Invent. Math. 101 (1990), no. 1,101-172.

Tian, Gang. Khler-Einstein metrics with positive scalar curvature. Invent.

Math. 130 (1997), no. 1, 1-37.

K. Uhlenbeck and S.-T. Yau, On the existence of Hermitian-Yang- Mills
connections in stable vector bundles, Comm. Pure Appl. Math. 39 (1986),
no. S, suppl., S257-5293.

X. Wang, Balance point and stability of vector bundles over a projective

manifold, Math. Res. Lett. 9 (2002), no. 2-3, 393—411.

X. Wang, Canonical metrics on stable vector bundles. Comm.Anal. Geom.

13 (2005), no. 2, 253-285.

Yau, Shing Tung. Calabi’s conjecture and some new results in algebraic

geometry. Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no.5, 1798-1799.

Yau, Shing Tung. On the Ricci curvature of a compact Khler manifold and
the complex Monge-Ampre equation. I. Comm. Pure Appl. Math. 31 (1978),
no. 3, 339-411.

S. Zelditch, Szegd kernels and a theorem of Tian, Internat.Math. Res. No-

tices 1998, no. 6, 317-331.

S. Zhang, Heights and reductions of semi-stable varieties, Compositio Math.

104 (1996), no. 1, 77-105.

105



