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Abstract

A nodal set is the zero locus of an eigenfunction of the Laplacian. We show that

for the standard unit sphere in Euclidean space of dimension at least three, certain

measures supported on nodal sets of normalized eigenfunctions, chosen uniformly and

at random, converge to the usual Lebesgue measure on the sphere as the corresponding

eigenvalues increase without bound; moreover, the exact nature of this convergence

is discussed.

We also show that the supremum norms of random eigenfunctions chosen from

the Nth eigenspace grow only on the order of the square root of the logarithm of N .

Finally, we compute the scaling limit of the two point correlation functions for the

measures mentioned above.

To perform the above computations, we must develop the relationship between the

eigenspace projection map, defined by duality with the evaluation map, and the value

distribution of eigenfunctions. We also develop a method of describing the gradient of

an eigenfunction geometrically in terms of the differential of the eigenspace projection

map.
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Chapter 1

Introduction

The study of spectral theory is concerned with the relationship between the geometry

of a manifold and the eigenvalues and eigenfunctions of its Laplacian. The standard

unit sphere in Euclidean space has long held a privileged place in the theory, due

in part to the relative ease with which one can compute both its eigenvalues and

eigenfunctions. Yet the sphere still contains a rich structure that lies just beneath

the surface of what is known, and invites us to ask subtle questions about the eigen-

functions of any compact real manifold.

We begin our discussion by recalling that the Laplacian is an elliptic linear op-

erator. By the Hodge Theorem [20], the space of square integrable functions on

the sphere admits a direct sum decomposition into the (complex) eigenspaces of the

Laplacian. On the spheres of dimension at least 2, these eigenspaces have increasing

dimension as we allow the corresponding eigenvalues to increase, a property which is

not true for arbitrary manifolds.

For quite some time, people have been concerned with studying the zero sets,

called nodal sets, of these eigenfunctions [5]. Let’s consider for a moment the simplest

sphere, namely the unit circle S1 in the plane. The Laplacian on S1 takes the form

∆ = − ∂2

∂θ2
,
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and its real eigenfunctions are of the form

a cosNθ + b sinNθ,

for N = 0, 1, . . . , and a, b real. One can easily check that each such non-zero eigen-

function with N ≥ 1 vanishes at exactly 2N distinct, equally spaced points on the

circle. So what can we say about nodal sets of higher-dimensional spheres? Yau

suggested in problem #74 of [30] that the hypersurface Hausdorff measure of nodal

sets on compact manifolds grows like the square root of the associated eigenvalue,

which is known in the literature as Yau’s Conjecture. Donnelly and Fefferman have

proven Yau’s Conjecture in the case of compact real-analytic manifolds [8]—a class

which includes the spheres. Also of interest, Berard computed in [2] the average hy-

persurface measure of nodal sets on rank-one symmetric spaces, thereby verifying an

analogue of Yau’s conjecture “en moyenne”.

It’s not immediately clear what generalizations of the “equal spacing” of nodal

points on S1 can be made to higher dimensional spheres. In an attempt to provide an

answer, we make the following observation: suppose one picks a sequence of non-zero

eigenfunctions f1, f2, . . . , on S1, with

∆fN = N2fN .

Let θN1 , . . . , θ
N
2N be the zeros of fN . By the definition of the Riemann integral, we

have for any continuous ϕ on S1,

1

2N

2N∑
j=1

ϕ(θNj )→
∫
S1

ϕ(θ) dθ,

as N →∞. In words, we say that unit mass measures placed on the nodal sets of the

fN converge weakly to the Lebesgue measure dθ. This is the idea of “equal spacing”

we’ll try to generalize in this work.

To get another view of how such a notion of equal spacing arises, we mention that

in [23], Shiffman and Zelditch computed the average volume of zero sets of holomor-

phic sections of high powers L⊗N , N � 1, of a positive line bundle L over a compact
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complex manifold. They showed that sequences of natural measures supported on

the zeros of random sections converge weakly to the curvature form of the line bundle

in the limit N → ∞. Zelditch then asked the question: does such a “uniformity in

the limit” theorem hold for measures placed on nodal sets of the sphere as well? He

conjectured that it did, motivated by the following analogy: on complex projective

space, holomorphic sections of powers of the hyperplane bundle can be identified with

homogeneous (holomorphic) complex polynomials. On the sphere, eigenfunctions can

be identified with homogeneous harmonic polynomials. In essence, studying nodal

sets is the real analogue of studying zero sets of such holomorphic sections.

As a final note, one could also approach this work from the study of random

polynomials. The interested reader is invited to peruse the references found in [9] for

a list of works devoted to the study of zeros of random polynomials in one variable.

As mentioned above, the present work is as an attempt to understand the zeros of

a particular type of random multi-variable polynomial—the homogeneous harmonic

polynomials.
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Chapter 2

Statement of Results

Let Sm, m ≥ 2, denote the unit sphere in R
m+1, equipped with the standard round

metric. Denote by ∆ the Laplacian on smooth functions. It is well known that the

eigenvalue problem

∆f = λf(2.1)

has non-trivial solutions for λ given by

λN = N(N +m− 1),(2.2)

with N a non-negative integer. We are interested in studying the distribution of zero

sets of random real eigenfunctions as λN → ∞. To explain our results, we set some

notation.

Denote by EN the eigenspace of all real solutions of (2.1) with λ = λN given

as in (2.2). Classically, EN is the vector space of all homogeneous, harmonic, real

polynomials of degree N in R
m+1, restricted to Sm. EN is an inner product space

under the usual L2-inner product

〈f, g〉L2 =

∫
Sm
f(x)g(x) dσm(x).

Here σm is the usual Lebesgue measure on Sm. Let dN
def
= dimEN . It is known [12]
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that

dN =
2N +m− 1

N +m− 1

(
N +m− 1

m− 1

)
=

2

(m− 1)!
Nm−1(1 + o(1)).

Here o(1) represents an error term which decays to 0 as N →∞.

Let SEN be the unit sphere in EN , consisting of all eigenfunctions with L2-norm

1. By identifying SEN with SdN−1, it inherits the Lebesgue measure µN , which we

normalize to be a probability measure:

µN(SEN) = 1.

The term ‘random’ will always be with respect to µN . Let SE∞ =
∏∞

N=0 SEN ,

µ∞ =
∏∞

N=0 µN .

Our technique for studying the zero sets of eigenfunctions is to associate to each

one a measure. We then try to understand the weak limit of these measures as

λN → ∞. There are two choices of natural measures which will interest us in this

work. The first is defined as follows: it is known [5] that for any f ∈ EN , its nodal set

Zero(f)
def
= f−1(0) ⊂ Sm is an (m − 1)-dimensional submanifold apart from a closed

set of smaller Hausdorff dimension. More precisely, there exists a closed subset Ξf

of Zero(f), with Hausdorff dimension less than m − 1, such that Zero(f) \ Ξf is an

embedded submanifold of Sm. As such, Zero(f) inherits the Riemannian hypersurface

measure ZN
f , considered as a measure on Sm.

The second measure is given for those f ∈ EN with no singular points by

δNf = f ∗δ0,

[19] where δ0 is the unit measure concentrated at the origin in R. We will refer to δNf

as the Léray nodal measure. From the Coarea Formula (3.2.12 of [10]), we can derive

the following relationship:

dδNf =
1

|∇f |
dZN

f .

We note here that ZN
f is homogeneous of degree 0, whereas δNf is homogeneous of

degree −1. Moreover, while ZN
f does depend on the metric chosen for Sm, it does
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Figure 2.1: Some Nodal Sets With N = 4, λN = 20

Figure 2.2: Some Nodal Sets With N = 5, λN = 30

not depend on the the function f defining Zero(f). On the other hand, δNf depends

heavily on f , but not on the metric chosen for Sm. For some examples of nodal sets,

see Figures 2.1, 2.2, 2.3, and 2.4.

Our impetus for taking this approach comes from the work of Shiffman and

Zelditch [23], where they are able to show that zero sets of random sequences of

sections of high powers of a positive line bundle over a compact complex manifold

become uniformly distributed. The interested reader is invited to read [3, 4], and

note that Lemmas 6.1 and 7.2 of the present work can be obtained as corollaries of

Theorem 2.2 of [4].
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Figure 2.3: A Nodal Set With N = 10, λN = 110

Figure 2.4: A Nodal Set With N = 21, λN = 462

Given a probability space (Ω, ω), we will denote the expected value and variance

of a random variable X, respectively, by

EωX =

∫
Ω

X(x) dω(x),

VωX =

∫
Ω

(X(x)− EωX)2 dω(x)

=

∫
Ω

X2(x) dω(x)− (EωX)2,

provided the integrals are finite. We will also have occasion to use the notation

(dµ, ϕ) =

∫
Sm
ϕ(x) dµ(x)
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for a measure µ and continuous function ϕ.

We will begin by showing the following proposition:

Proposition 2.1. The expected values of ZN
f and δNf as distributions are proportional

to the volume measure σm. Explicitly, for all continuous functions ϕ on Sm, we have

EµN (ZN
f , ϕ) =

|Sm−1|
|Sm|

√
λN
m

∫
Sm
ϕ(x) dσm(x),(2.3)

EµN (δNf , ϕ) =
|SdN−2|
|SdN−1|

√
|Sm|
dN

∫
Sm
ϕ(x) dσm(x).(2.4)

Equality (2.3) was shown in [2] with ϕ ≡ 1 using integral geometry. For reference,

we recall the volume formula for spheres:

|Sm| = 2π
m+1

2

Γ
(
m+1

2

) ,
where Γ signifies, as usual, the Euler gamma function. Thus, while the constant on

the right-hand side of (2.3) grows like N , the constant on the right-hand side of (2.4)

is √
|Sm|
2π

+ o(1).

This proposition allows us to define normalized nodal measures Z̃N
f and δ̃Nf by

requiring that

EµN (Z̃N
f , ϕ) = EµN (δ̃Nf , ϕ) =

∫
Sm
ϕ(x) dσm(x).

We now come to our main theorems. Recall that we say a sequence of measures {ωN}

defined on a compact measure space Ω converges weakly to a measure ω on Ω as

N →∞ if given any continuous function ϕ on Ω,

lim
N→∞

∫
Ω

ϕ dωN =

∫
Ω

ϕ dω.

Theorem 2.2. 1. As N →∞, we have

Z̃N
f → σm
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almost surely in the sense of Cesàro.

By this we mean that for µ∞-almost all sequences of random normalized eigen-

functions {fN}N≥0, with fN ∈ SEN ,

1

M

M∑
N=1

Z̃N
fN
→ σm

weakly as M →∞.

2. As N →∞, we have

Z̃N
f → σm

weakly in probability.

By this we mean that for any continuous function ϕ on Sm, and any ε > 0,

µN

{
f ∈ SEN :

∣∣∣∣∫
Zero(f)

ϕ dZ̃N
f −

∫
Sm
ϕ dσm

∣∣∣∣ > ε

}
→ 0

as N →∞.

3. Suppose m ≥ 6. Then as N →∞, we have

Z̃N
f → σm

almost surely in the sense of weak convergence.

By this we mean that for µ∞-almost all sequences of random normalized eigen-

functions {fN}N≥0, with fN ∈ SEN ,

Z̃N
fN
→ σm

weakly as N →∞.

Theorem 2.3. Parts 1 and 2 of Theorem 2.2 hold with Z̃N
f replaced by δ̃Nf . Part 3

holds with Z̃N
f replaced by δ̃Nf for m ≥ 4.
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Theorems 2.2 and 2.3 tell us that the measures ZN
f and δNf become evenly dis-

tributed with respect to the volume measure in the limit N → ∞. What changes

among the parts of the theorems is the method of convergence. We mention here

that even though the proofs presented in this work are not strong enough to prove

a.s. weak convergence for all m, we conjecture that it does hold.

We will prove Theorem 2.2 in section 8.1, then explain the necessary modifications

to prove Theorem 2.3 in section 8.2. Before we do that, we will first describe the

relationship between the values of eigenfunctions and their eigenspace in chapter 3.

As a corollary of this relationship, we will derive L∞ bounds for sequences of random

eigenfunctions in chapter 4. In chapter 5 we will discuss some smoothness properties

of nodal sets, and in chapters 6 and 7 we will compute the expected value and variance

of sequences of random nodal measures. We will then examine the scaling limit of

the two point correlation functions in chapter 9.
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Chapter 3

Eigenspace Geometry

For all N > 0, we now define the eigenspace map ΦN : Sm → EN . Consider the

following diagram:

E∗N

Sm
ΦN

//

ev
=={{{{{{{{
EN

ι∼=

OO

Here ι is the duality isomorphism defined by

ι(f)(g) = 〈f, g〉L2 ,

and ev is the evaluation mapping given by

ev(x)(f) = f(x).

We define ΦN so as to make the above diagram commute. Thus

ΦN(x) =
(
ι−1 ◦ ev

)
(x),

or

〈ΦN(x), f〉L2 = f(x).(3.1)

If we choose an orthonormal basis {f1, . . . , fdN} of EN , then ΦN is given in this basis

by

ΦN(x) = (f1(x), . . . , fdN (x)),(3.2)
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or (
ΦN(x)

)
(y) =

dN∑
j=1

fj(y)fj(x).

The eigenspace map has several useful properties that allow us to use the inner

product structure of EN to study nodal sets. In particular [9], one can check from

the definitions that for all f ∈ EN ,

ΦN(Zero(f)) = ΦN(Sm) ∩ f⊥,

where f⊥ = {g ∈ EN : 〈f, g〉L2 = 0}.

We will also need to understand the differential—or equivalently the gradient—

of an eigenfunction in terms of the eigenspace map. Fix N > 0. For notational

convenience, we will temporarily drop the N dependence of Φ. Fix x ∈ Sm. Consider

the following (non-commutative) diagram of linear maps between vector spaces:

EN
dx // T ∗xS

m

TΦ(x)EN

αx ∼=

OO

TxS
m

∼= ιSm,x

OO

dΦx
oo

where

dx(f) = dfx, f ∈ EN

αx(u) = expΦ(x)(u)− Φ(x), u ∈ TΦ(x)EN ,

ιSm,x(v)(w) = 〈v, w〉TxSm , v, w ∈ TxSm.

We condense the above diagram to obtain the following one:

EN

dx
**

T ∗xS
m

Jx

ii

where

Jx = αx ◦ dΦx ◦ ι−1
Sm,x.(3.3)
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It is useful to view dx and Jx in coordinate form. To this end, fix an orthonormal

basis {f1, . . . , fdN} of EN . Write f ∈ EN as

f =

dN∑
j=1

ajfj.(3.4)

Choose a coordinate neighborhood U ⊂ Sm of x with coordinate functions x1, . . . , xm.

With these choices, dx is given by

dx(f) =

dN∑
j=1

ajdfj|x,

and Jx is given by

Jx(dxj) =

dN∑
l=1

m∑
h=1

gjh
∂fl
∂xh

∣∣∣∣
x

fl,

where gjh(x) = 〈dxj, dxh〉T ∗xSm .

We are now able to construct the operator we are really interested in. Define

QN
x : EN → EN by

QN
x = Jx ◦ dx.

Lemma 3.1. For f, g ∈ EN , we have

〈QN
x f, g〉L2 = 〈dfx, dgx〉T ∗xSm .(3.5)

Moreover, by (3.5) we see that QN
x is a symmetric operator.

Proof. Recalling the decomposition (3.4) of f , we have

〈QN
x fj, fk〉L2 = 〈Jxdfj, fk〉L2

=
m∑
p=1

∂fj
∂xp
〈Jxdxp, fk〉L2

=

dN∑
l=1

m∑
p,h=1

gph
∂fj
∂xp

∂fl
∂xh
〈fl, fk〉L2

=
m∑

p,h=1

gph
∂fj
∂xp

∂fk
∂xh

= 〈dfj, dfk〉T ∗xSm .

The lemma now follows by linearity.
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We now want to use the symmetries of Sm to deduce information about ΦN and

QN
x . Recall that Sm can be identified with the homogeneous space SO(m+1)/SO(m)

[29], and as such SO(m+1) acts transitively on Sm by isometries. This action induces

an action on continuous functions by

g · f(x) = f(g−1 · x),

for g ∈ SO(m + 1), f ∈ C(Sm), x ∈ Sm. It may be instructive to note that ΦN is

an equivariant map [7]. By this we mean the following: if we denote by v the image

under ΦN of the identity e ∈ SO(m+ 1), we have

ΦN(g) = g · v.

Recall also that σm is bi-invariant under the SO(m + 1) action. It follows that

〈 , 〉L2 is also SO(m + 1)-invariant. Therefore, for an ordered orthonormal basis f̄ =

(f1, . . . , fdN ) of EN , g · f̄ is also an orthonormal basis. Hence there is an orthogonal

matrix Og = (okl) so that g · f̄ = Ogf̄ . We have then

g ·
dN∑
j=1

f 2
j (x) =

dN∑
j=1

f 2
j (g−1 · x)

=

dN∑
j=1

(g · fj(x))2

=

dN∑
j,k,l=1

okloklf
2
j (x)

=

dN∑
j=1

f 2
j (x).

Therefore by (3.2), ‖ΦN(x)‖L2 is independent of x. In particular, ΦN maps into a

sphere. Moreover, we can compute

dN∑
j=1

f 2
j (x) =

1

|Sm|

dN∑
j=1

∫
Sm
f 2
j (x) dσm(x)

=
dN
|Sm|

,
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and hence

‖ΦN(x)‖L2 =

√
dN
|Sm|

.(3.6)

Consider now the symmetric tensor
∑dN

j=1 dfj ⊗ dfj. As above, we have for any

g ∈ SO(m+ 1),

g∗
dN∑
j=1

dfj ⊗ dfj =

dN∑
j=1

g∗dfj ⊗ g∗dfj

=

dN∑
j=1

d(g · fj)⊗ d(g · fj)

=

dN∑
j,k,l=1

oklokldfj ⊗ dfj

=

dN∑
j=1

dfj ⊗ dfj.

Since the round metric on Sm is the unique SO(m+ 1)-invariant metric, up to mul-

tiplicative constant, it follows that

dN∑
j=1

dfj ⊗ dfj = cNσm(3.7)

for some constant cN ≥ 0. To compute cN , we can use Takahashi’s Theorem [26] which

states that given an isometric immersion h : Mm → R
m+k of a compact manifold M

satisfying

∆h = λh

componentwise, we can conclude that h is a minimal immersion into a sphere of radius√
m
λ

. It follows then that

cN =
λNdN
m|Sm|

.(3.8)

Now let R(T ) and N (T ) denote the range and null space, respectively, of a linear

operator T .
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Lemma 3.2. For all x ∈ Sm, 1
cN
QN
x is a projection operator on EN . Moreover,

rankQN
x = m, and R(QN

x ) can be identified with the tangent space to ΦN(Sm) at

ΦN(x). Also, ΦN(x) ∈ N (QN
x ).

Proof. We have
(

1
cN
QN
x

)2

= 1
c2N

(Jx ◦ dx ◦ Jx ◦ dx). If we can show that

Q′x
def
= dx ◦ Jx = cNI,

where I is the identity operator on T ∗xS
m, we would have

(
1
cN
QN
x

)2

= 1
cN
QN
x as

desired.

On U , (3.7) is equivalent to

dN∑
l=1

∂fl
∂xj

∂fl
∂xk

= cNgjk,

where gjk = 〈 ∂
∂xj
, ∂
∂xk
〉TxSm . One checks from the definitions that

Q′x(dxj) =

dN∑
l=1

m∑
h,k=1

gjh
∂fl
∂xh

∂fl
∂xk

dxk

= cN

m∑
h,k=1

gjhghkdxk

= cNdxj.

Hence Q′x = cNI, as desired. Note in particular then that dx, Jx, and QN
x all have

rank m. That R(QN
x ) is the tangent space to ΦN(Sm) at ΦN(x) follows from (3.3).

Since ΦN maps into a sphere, we have

dN∑
j=1

∂fj(x)

∂xk
fj(x) ≡ 0

for k = 1, . . . ,m. We compute

QN
x ΦN(x) = Jx

(
dN∑
j=1

fjdfj

)

=

dN∑
j=1

m∑
k=1

fj
∂fj
∂xk

Jx(dxk)

= 0,
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which proves that ΦN(x) ∈ N (QN
x ).

From the preceding two lemmas we obtain geometrically the following non-trivial

sharp pointwise bound.

Corollary 3.3. For all f ∈ SEN , we have

|∇f(x)| ≤

√
λNdN
m|Sm|

.

Before leaving this chapter, we note that the eigenspace maps ΦN have been

studied extensively as examples of minimal immersions of spheres into spheres [6, 7,

15, 26, 28]. Also, the Lp mapping properties of the ΦN in the case m = 2 have been

considered in [24].
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Chapter 4

L∞ Norms

We will now consider an application of the previous chapter. From (3.1), (3.6), and

the Cauchy-Schwarz inequality, it follows that for all f ∈ SEN and x ∈ Sm,

|f(x)| ≤ ‖f‖L2‖ΦN(x)‖L2 =

√
dN
|Sm|

.(4.1)

From the upper bound

dN = O
(
Nm−1

)
,

we obtain the estimate

‖f‖∞ ≤

√
dN
|Sm|

= O
(
N

m−1
2

)
.

Moreover, this inequality is sharp; in particular, from (3.1) we see that equality occurs

in (4.1) at f(x) for f given by

f =
1

‖ΦN(x)‖L2

ΦN(x).

When we bound the L∞ norms of random eigenfunctions, however, we can do much

better.

Theorem 4.1. For µ∞-almost all sequences {fN}N≥0, with fN ∈ SEN , we have the

following estimate as N →∞:

‖fN‖∞ = O
(√

logN
)
.(4.2)
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The proof follows the ideas of Nonnenmacher and Voros [18]. For similar theorems,

see [27].

Proof. So as to avoid confusion, d(x, y) will denote the distance between x and y as

measured on Sm, while d̃(f, g) will denote the distance between f and g measured on

SEN . Also, for notational convenience, let

|ΦN(x)| def
= ‖ΦN(x)‖L2

for the remainder of the proof.

We know that for f ∈ SEN , x ∈ Sm,

|f(x)| = |〈f,ΦN(x)〉L2| =

√
dN
|Sm|

∣∣∣∣cos d̃

(
f,

ΦN(x)

|ΦN(x)|

)∣∣∣∣ .(4.3)

Moreover,

d̃

(
ΦN(x)

|ΦN(x)|
,

ΦN(y)

|ΦN(y)|

)
≤
√
λN
m
d(x, y).

Fix p > 1 + 1
2
(m−1). Lemma 2.6 of [17] tells us that it is possible to pick at most

M = c1N
(m+1)p points {xj} ⊂ Sm in such a way that given any x ∈ Sm, there exists

a j such that d(x, xj) < c2N
−p. For f ∈ SEN , r > 0, we denote by B(f, r) the open

ball of radius r around f in SEN . For a fixed 0 < r < π
2
, we have

µN

{
M⋃
j=1

B

(
ΦN(xj)

|ΦN(xj)|
, r

)}
≤M

|SdN−2|
|SdN−1|

∫ 1

cos r

(
1− t2

) dN−3

2 dt

≤M
|SdN−2|
|SdN−1|

(sin r)dN−1

≤ c1N
m(p+ 1

2
)+p− 1

2

(
1− cos2 r

) dN−1

2 .

Working in reverse, we ask: If

q = µN

{
M⋃
j=1

B

(
ΦN(xj)

|ΦN(xj)|
, r

)}
,

what information do we gain about r in terms of q? We have, with s = m(p+ 1
2
)+p− 1

2
,

r ≥ cos−1

√
2s logN + 2| log q|+ c3

dN − 1
def
= g(p,N, q),

19



with c3 = 2 log c1.

Now if f /∈
⋃M
j=1 B

(
ΦN (xj)

|ΦN (xj)| , r
)

, we have

d̃

(
f,

ΦN(x)

|ΦN(x)|

)
≥ d̃

(
f,

ΦN(xj)

|ΦN(xj)|

)
− d̃

(
ΦN(x)

|ΦN(x)|
,

ΦN(xj)

|ΦN(xj)|

)
≥ g(p,N, q)− c2

√
λN
m
N−p.

(4.4)

Choosing r so that q ≤ N−2, we have by (4.3), (4.4), and the addition formula for

cosines the following pointwise bound for these f :

|f(x)| ≤

√
dN
|Sm|

(
cos g(p,N, q) + sin

(
c4N

−p+1
))

≤ c5

√
dN cos g(p,N, q)

= O
(√

logN
)
,

on a set of measure at least 1−N−2. In particular, (4.2) holds for a set of µ∞-positive

measure. By the “zero-one” law [14], the theorem follows.
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Chapter 5

Nodal Sets

We say that a function f has a singular point at x if and only if f(x) = |∇f(x)| = 0.

We will show that most eigenfunctions do not admit singular points, and thereby

conclude that their nodal sets are embedded submanifolds.

Lemma 5.1. The set of all f ∈ SEN which have at least one singular point has

Hausdorff dimension at most dN − 2.

By the Implicit Function Theorem, the zero set of a smooth function with no

singular points is an embedded submanifold. Hence we have the following useful

corollary:

Corollary 5.2. For µN -almost all f ∈ SEN , Zero(f) ⊂ Sm is an embedded subman-

ifold of dimension m− 1.

Proof (of Lemma 5.1). We will denote elements of T ∗Sm by (x, v), where x ∈ Sm,

v ∈ T ∗xSm. Define

Ψ : Sm × EN → T ∗Sm × R

by

Ψ(x, f) =
(
(x, dfx), f(x)

)
=
(
(x, dx(f)), 〈ΦN(x), f〉L2

)
.
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Clearly Ψ is C∞.

As before, choose an orthonormal basis {f1, . . . , fdN} of EN , with corresponding

coordinate functions a1, . . . , adN . We identify EN with R
dN by fj ↔ ej, where {ej}

is the standard basis of R
dN . Choose a coordinate neighborhood U ⊂ Sm with

coordinate mapping ϕ(x) = (x1, . . . , xm). Let V = ϕ(U) ⊂ R
m. We identify T ∗US

m

with V × R
m by dxj ↔ ej, {ej} the standard basis of R

m. Write

dfj =
m∑
k=1

cjkdxk.

In this setup, we can write Ψ as

Ψ : V × R
dN → V × R

m × R

where

Ψ(x1, . . . , xm; a1, . . . , adN ) =

(
x1, . . . , xm;

dN∑
j=1

ajcj1, . . . ,

dN∑
j=1

ajcjm;

dN∑
j=1

ajfj(x)

)
.

The Jacobian matrix of Ψ is given by
Im×m 0

∗ Am×dN

∗ B1×dN


(2m+1)×(m+dN )

where B1j = fj, and Ajk = cjk. From the fact that rank dx = m, it follows that

rankA = m. Moreover, from the fact that ΦN(x) ∈ N (Qn
x), we conclude that this

Jacobian has rank 2m+ 1, i.e., the differential of Ψ is surjective.

Now define K ⊂ Sm×EN by K = Ψ−1((Sm, 0), 0). Denote by π : Sm×EN → EN

projection onto the second component. Then π(K) ⊂ EN is the set of all f ∈ EN with

at least one singular point. By the preceding paragraph and the Implicit Function

Theorem, K is a (dN − 1)-dimensional embedded submanifold. In particular, it has

Hausdorff dimension dN − 1. Being linear, π cannot increase Hausdorff dimension.

Hence π(K) has Hausdorff dimension at most dN − 1. Observing that cf ∈ π(K) for
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all f ∈ π(K), c ∈ R, it follows that the Hausdorff dimension of π(K)|SEN is at most

dN − 2, and the lemma is proved.

For a, b > 0, denote by Hb
a ⊂ SEN the set

Hb
a = {f ∈ SEN : |f(x)| ≤ a⇒ |∇f(x)| > b}.(5.1)

The following technical lemma will be used extensively in what follows.

Lemma 5.3. The following statements hold:

1. Hb′

a′ ⊂ Hb
a if a ≤ a′, b ≤ b′,

2. Hb
a is open in SEN ,

3. If f ∈ SEN has no singular points, then f ∈ Hb
a for some a, b > 0,

4. µN
(
SEN \ ∪a>0 ∪b>0 H

b
a

)
= 0, and

5. For f ∈ Hb
a, and 0 ≤ ε < a, f−1(−ε, ε) is contained in a tubular neighborhood

around Zero(f) of radius ε
b
.

Proof. Statement 1 follows from (5.1). Define

ν : SEN × Sm → R× R

by

ν(f, x) = (|f(x)|, |∇f(x)|).

Clearly ν is continuous. Let π : SEN × Sm → SEN denote projection onto the first

factor. Then SEN \Hb
a = π(ν−1([0, a]× [0, b])), which is closed. This proves 2.

Now pick f ∈ SEN with no singular points. We note that both Zero(f) and

Crit(f)
def
= {x ∈ Sm : |∇f(x)| = 0} are closed in Sm. Since Sm is a normal topological

space, we can find two disjoint open sets A and B in Sm such that Zero(f) ⊂ A and

Crit(f) ⊂ B. On Sm \ A, |f(x)| > a for some a > 0. Therefore f−1[−a, a] ⊂ A. On
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Sm \ B, |∇f(x)| > b for some b > 0. Since A ⊂ (Sm \ B), we obtain 3. From 3 and

Lemma 5.1 we now get 4.

It remains to prove 5. Pick a point x0 ∈ f−1(−ε, ε), with f(x0) > 0. Let γ be a

curve γ : [0,M ]→ Sm with γ(0) = x0, f(γ(M)) = 0, and

γ′(t) = −∇f(γ(t))(5.2)

for all t ∈ [0,M ]. Such a curve exists since |∇f(x)| > b on f−1(−ε, ε). Then we have

ε > f(x0) = −
∫
γ

df ≥ bd(x0, γ(M)),

where d denotes distance. Therefore, f−1[0, ε) is contained in a tubular neighborhood

of radius ε
b

around Zero(f). The same proof works for those x with f(x) < 0; just

replace −∇f with ∇f in (5.2).
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Chapter 6

Expected Value

We now want to prove the first equality in Proposition 2.1. To do so, we will need

the following lemma. Heuristically, it states that in order to compute the expected

value of ZN
f , it suffices to average the norm of the gradient of all eigenfunctions which

vanish at a point.

Lemma 6.1. Fix N > 1. Let P = {ΦN(x)}⊥ ∩ SEN . For all continuous functions

ϕ on Sm, we have

EµN (ZN
f , ϕ) =

∫
Sm
ϕ(x)KN(x) dσm(x),(6.1)

where

KN(x) =
1

‖ΦN(x)‖L2

∫
P
|∇f(x)| dµN |P(f).

Here µN |P denotes the natural Lebesgue measure on P (which is also a sphere),

normalized so that

µ|P(P) =
|SdN−2|
|SdN−1|

.

Proof. Define

I(f, ε;x) =


1 if |f(x)| < ε,

0 otherwise.
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By the Coarea Formula, we have, for those f with no singular points,

(ZN
f , ϕ) = lim

ε→0

1

2ε

∫
Sm
I(f, ε;x)|∇f(x)|ϕ(x) dx.

For those continuous ψ on SEN with support lying in Hb
a for some a and b, we claim

that the following equalities hold:∫
SEN

ψ(f)(ZN
f , ϕ) dµN(f)

=

∫
SEN

ψ(f)

{
lim
ε→0

1

2ε

∫
Sm
I(f, ε;x)|∇f(x)|ϕ(x) dx

}
dµN(f)

= lim
ε→0

1

2ε

∫
SEN

ψ(f)

∫
Sm
I(f, ε;x)|∇f(x)|ϕ(x) dx dµN(f)(6.2)

= lim
ε→0

1

2ε

∫
Sm
ϕ(x)

∫
SEN

ψ(f)I(f, ε;x)|∇f(x)| dµN(f) dx(6.3)

=

∫
Sm
ϕ(x)KN

ψ (x) dx,(6.4)

where

KN
ψ (x) =

1

‖ΦN(x)‖L2

∫
P
ψ(f)|∇f(x)| dµN |P(f).

To begin the proofs of these, first note that equality (6.3) holds by Fubini’s The-

orem. Next, fix x ∈ Sm. We note that I(f, ε;x) = 1 if and only if

|〈ΦN(x), f〉L2| = |f(x)| < ε.

We compute:

lim
ε→0

1

2ε

∫
SEN

ψ(f)I(f, ε;x)|∇f(x)| dµN(f) = KN
ψ (x)

uniformly in x (cf. Lemma 1.3.2 of [12]). This proves equality (6.4).

We now verify (6.2). Given f ∈ EN , denote by T ηf ⊂ Sm the tubular neighborhood

around Zero(f) of radius η. Then for f ∈ Hb
a,

supp I(f, ε;x) ⊂ T
ε
b
f ,

by Lemma 5.3.5, so long as ε < a. Let h = − div
(
∇f(x)
|∇f(x)|

)
denote the mean curvature

along Zero(f). The following upper bound on the size of a tubular domain is borrowed
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from Theorem 8.4 in [11]:

σm(T ηf ) ≤
∫ η

0

∫
Zero(f)

∑
±

max

((
1± th

m− 1

)m−1

, 0

)
dZN

f (x) dt.

Also, since f is an eigenfunction, we have

|h| =
∣∣∣∣〈∇f(x),∇

(
1

|∇f(x)|

)〉∣∣∣∣
≤ 1

|∇f(x)|
|∇|∇f(x)||

=
1

2|∇f(x)|2
|∇|∇f(x)|2|

≤ C

b2
,

for some constant C depending only on N . We recall also that the volume of Zero(f)

is uniformly bounded for all f ∈ EN [8], so

1

2ε
σm(T

ε
b
f )

is uniformly bounded for all f ∈ Hb
a, with ε < a. This justifies equality (6.2) for all

ψ whose support lies in Hb
a.

Continuing, we now take the supremum over all ψ with 0 ≤ ψ ≤ 1, and supp ψ ⊂

Hb
a to obtain∫
Hb
a

(ZN
f , ϕ) dµN(f) =

∫
Sm
ϕ(x)

{
1

‖ΦN(x)‖L2

∫
P∩Hb

a

|∇f(x)| dµN |P(f)

}
dσm(x).

Since this equality holds for all a, b > 0, we obtain

E(ZN
f , ϕ) =

∫
Sm
ϕ(x)

{
1

‖ΦN(x)‖L2

∫
P∩H
|∇f(x)| dµN |P(f)

}
dσm(x),

where H = ∪a>0 ∪b>0 H
b
a. It remains to prove that for all x ∈ Sm,∫

P∩H
|∇f(x)| dµN |P(f) =

∫
P
|∇f(x)| dµN |P(f).

Fix x0 ∈ Sm. Let H0 = {f ∈ SEN : |∇f(x0)| = f(x0) = 0}. Then∫
(P∩H)∪H0

|∇f(x0)| dµN |P(f) =

∫
P∩H
|∇f(x0)| dµN |P(f).
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We will be done if we can show that P \ (H ∪H0) has dimension at most dN − 3.

To this end, define Ψ̃ : Sm \ {±x0} × EN → T ∗Sm × R× R by

Ψ̃(y, f) =
(
(y, dfy), f(y), f(x0)

)
.

We know that ΦN(x) is not parallel to ΦN(y) so long as y 6= ±x (Facts B.2.2 and

B.2.5 from Appendix B). If we can show that ΦN(y) /∈ R(QN
x ), we will know that dΨ̃

has rank 2m + 2 everywhere. Suppose to the contrary that ΦN(y) ∈ R(QN
x ). Then

f(x0) = 0 for all f ∈ EN with |∇f(y)| = 0. We can show by example that this is not

possible. Denote by Ky
∼= SO(m) the isotropy subgroup of rotations which fix y. We

first show that if y has the property stated above, then all eigenfunctions exhibiting

a critical point at y must vanish not only at x0, but also on Ky · x0. To see this, we

note that if an eigenfunction f has a critical point at y but does not vanish at a point

x1 ∈ Ky · x0, then k · f also has a critical point at y and does not vanish at x0, where

k · x1 = x0, k ∈ Ky, contradicting our assumption. Of course for N > 1, ΦN(y) can

be rotated by an element not in Ky to have a critical point at y (B.2.5), and thus it

will not satisfy the above requirement, supplying the necessary contradiction.

It follows from the Implicit Function Theorem then that K = Ψ̃−1((Sm, 0), 0, 0) is

a (dN − 2)-dimensional embedded submanifold of Sm \ {±x0}×EN . Therefore π(K)

has Hausdorff dimension at most dN − 2. Observing that cf ∈ π(K) for all f ∈ π(K)

and c ∈ R, it follows that π(K)|SEN has Hausdorff dimension at most dN − 3. We

finish by noting that

π(K)|SEN = P \ (H ∪H0).

Remark 6.2. It might be instructive to note here that KN(x) is independent of x. In

particular, for every g ∈ SO(m+ 1),

EµN (ZN
f , g · ϕ) = EµN (ZN

f , ϕ).
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We recall that the sphere Sm has a unique (up to multiplicative constant) SO(m+1)-

invariant measure. As such, EµNZ
N
f must be a constant multiple of the usual Lebesgue

measure σm. From (6.1), we see therefore that KN(x) must be constant.

We are now in a position to prove the first equality of Proposition 2.1.

Proof (of (2.3)). Fix x ∈ Sm. We will compute KN(x). Choose an orthonormal basis

{f1, . . . , fdN} of EN and write f ∈ EN as

f =

dN∑
j=1

ajfj.

Without loss of generality we may assume that ΦN(x) = ‖ΦN(x)‖L2fdN . We may

assume also that {f1, . . . , fm} span the range of 1
cN
QN
x . For notational convenience,

let a = (a1, . . . , am), and da = da1 . . . dam. We slice integrate, e.g., Theorem A.5 of

[1], with a1, . . . , am all constant to obtain∫
P
|∇f(x)| dµN |P(f) =

√
cN
|SdN−m−2|
|SdN−1|

∫
Bm
|a|
(
1− |a|2

) dN−m−3

2 da

=
√
cN
|SdN−m−2||Sm−1|
|SdN−1|

∫ 1

0

rm(1− r2)
dN−m−3

2 dr

=
√
cN
|Sm−1|
|Sm|

.

(6.5)

Equality (2.3) now follows from (6.5), (3.6), and (3.8).

29



Chapter 7

Variance

In view of the first equality in Proposition 2.1, we now define normalized nodal

measures Z̃N
f for f ∈ EN by

Z̃N
f =

|Sm|
|Sm−1|

√
m

λN
ZN
f .

In particular,

EµN (Z̃N
f , ϕ) =

∫
Sm
ϕ(x) dσm(x).

The main result which will occupy the next two chapters is the following:

Proposition 7.1. For m ≥ 2 fixed, we have the following estimate as N →∞:

VµN (Z̃N
f , ϕ) = O

(
‖ϕ‖2

L∞

N
(m−1)2

3m+1

)
.

Before we introduce the next lemma, which will serve as the cornerstone for prov-

ing the above proposition, we need to make a definition. For N ≥ 1, let

ΥN(x, y) =

(
1−

〈ΦN(x),ΦN(y)〉2L2

‖ΦN(x)‖2
L2‖ΦN(y)‖2

L2

)− 1
2

.

The Funk-Hecke Theorem [12] states that

〈ΦN(x),ΦN(y)〉L2 =
dN
|Sm|

Pm+1
N (cos d(x, y)),
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where d denotes distance as measured on Sm, and Pm+1
N is the Nth Legendre poly-

nomial of order m+ 1. See Appendix B for a review of the definition and properties

of Legendre polynomials. We can write ΥN more concretely then as

ΥN(x, y) =
1√

1−
(
Pm+1
N (cos d(x, y))

)2
.(7.1)

The next lemma tells us that in order to compute the second moment of Z̃N
f , we

need to average the product of the norms of the gradient of an eigenfunction evaluated

at two points x and y over all eigenfunctions which vanish at both x and y.

Lemma 7.2. Let Q = {ΦN(x)}⊥ ∩ {ΦN(y)}⊥ ∩ SEN . For all continuous functions

ϕ on Sm, we have∫
SEN

(Z̃N
f , ϕ)2 dµN(f) =

∫
Sm

∫
Sm
ϕ(x)ϕ(y)KN(x, y) dx dy,

where

KN(x, y) =
ΥN(x, y)

KN(x)KN(y)‖ΦN(x)‖L2‖ΦN(y)‖L2

∫
Q
|∇f(x)||∇f(y)| dµN |Q(f).(7.2)

Proof. For those continuous ψ on SEN with support lying in Hb
a for some a and b,

we claim that the following equalities hold:∫
SEN

ψ(f)(ZN
f , ϕ)2 dµN(f)

=

∫
SEN

ψ(f)

{
lim
ε→0

1

2ε

∫
Sm
I(f, ε;x)|∇f(x)|ϕ(x) dx

}2

dµN(f)

= lim
ε→0

∫
SEN

ψ(f)

{
1

2ε

∫
Sm
I(f, ε;x)|∇f(x)|ϕ(x) dx

}2

dµN(f)(7.3)

= lim
ε→0

1

4ε2

∫
Sm

∫
Sm
ϕ(x)ϕ(y)

∫
SEN

ψ(f)I(f, ε; x)I(f, ε; y)(7.4)

× |∇f(x)||∇f(y)| dµN(f) dx dy

=

∫
Sm

∫
Sm
ϕ(x)ϕ(y)KN

ψ (x, y) dx dy,(7.5)

where

KN
ψ (x, y) =

ΥN(x, y)

‖ΦN(x)‖L2‖ΦN(y)‖L2

∫
Q
ψ(f)|∇f(x)||∇f(y)| dµN |Q(f).

31



Again, equality (7.4) holds by Fubini’s Theorem. Equality (7.3) holds just as

(6.2) for all ψ whose support lies in some Hb
a. Lemma A.1, together with Lemma B.4,

(A.1), and the Dominated Convergence Theorem, gives us

lim
ε→0

1

4ε2

∫
SEN

ψ(f)I(f, ε; x)I(f, ε; y)|∇f(x)||∇f(y)| dµN(f) = KN
ψ (x, y),

and justifies equality (7.5). We now finish just as in Lemma 6.1.
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Chapter 8

Proofs of the Main Theorems

8.1 The Riemannian Hypersurface Measure

We begin by proving Proposition 7.1 in small steps. Fix 0 < p < 1 − 4
m+3

, to be

determined later. The upper limit on p, which is a technical necessity for now, will

automatically be satisfied in the end. We define Λp
N ⊂ Sm × Sm by

Λp
N =

{
(x, y) : d(x, y) ≥ 1

Np

}
.

Let Λp
N = Sm × Sm \ Λp

N . In other words, the bar over Λp
N will signify not closure,

but rather complement. We have

VµN (Z̃N
f , ϕ) =

(∫
ΛpN

+

∫
ΛpN

)
ϕ(x)ϕ(y)(KN(x, y)− 1) dx dy.

We concentrate first on the integral over Λp
N .

Lemma 8.1. For m ≥ 2 fixed, we have the following estimate as N →∞:∫
ΛpN

ϕ(x)ϕ(y)(KN(x, y)− 1) dx dy = O

(
‖ϕ‖2

L∞

Np(m−1)

)
Before we begin the proof, we need two lemmas.

Lemma 8.2. For all x ∈ Sm,∫
Q
|∇f(x)|2 dµN |Q(f) ≤ cN

m

2π
.
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Proof. Choose an orthonormal basis {f1, f2, g1, . . . , gdN−2} of EN such that

1. ΦN(x) = ‖ΦN(x)‖L2f1,

2. ΦN(y) ∈ Span{f1, f2}, and

3. R(QN
x ) ⊂ Span{f2, g1, . . . , gm}.

Write f ∈ EN as f = a1f1 + a2f2 +
∑dN−2

j=1 bjgj. Then∫
Q
|∇f(x)|2 dµN |Q(f) ≤ cN

|SdN−m−3|
|SdN−1|

∫
Bm
|b̄|2
(
1− |b̄|2

) dN−m−4

2 dbm . . . db1

= cN
|SdN−m−3||Sm−1|
|SdN−1|

∫ 1

0

rm+1
(
1− r2

) dN−m−4

2 dr

=
cN
2

|SdN−m−3||Sm−1|
|SdN−1|

∫ 1

0

(1− r)
dN−m−2

2
−1r

m+2
2
−1 dr

= cN
m

2π
.

Lemma 8.3. For some C independent of both N ≥ 1 and u ∈ [0, π
2
],

sinu√
1− (PM

N (cosu))2
≤ C.(8.1)

Note that C may depend on M .

Proof. One can show easily that (8.1) is equivalent to

(PM
N )2(cosu) ≤ 1− 1

C2
sin2 u,

or equivalently, for all 0 ≤ t ≤ 1,

(PM
N )2(t) ≤ 1− 1

C2
(1− t2).

We recall the integral representation of Legendre polynomials found in [12]:

PM
N (t) =

|SM−3|
|SM−1|

∫ π

0

{
t+ i
√

1− t2 cosϕ
}N

(sinϕ)M−3 dϕ.
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We note that

|t+ i
√

1− t2 cosϕ| =
√

1− (1− t2) sin2 ϕ

≤ 1.

Hence for N ≥ 2,

(PM
N )2(t) ≤ |PM

N (t)|

≤ 1− (1− t2)
|SM−3|
|SM−1|

∫ π

0

sinM−1 ϕ dϕ.

Proof (of Lemma 8.1). By the Cauchy-Schwarz inequality and Lemma 8.2, we have∫
Q
|∇f(x)||∇f(y)| dµN |Q(f) ≤ cN

m

2π
.

From this inequality, together with (7.2) and (3.6), we have∫
ΛpN

KN(x, y) dx dy ≤ cN
m

2π

|Sm|
dN

∫
ΛpN

ΥN(x, y)

KN(x)KN(y)
dx dy.(8.2)

From (2.3), (6.1), and Remark 6.2, we have

KN(x) = KN(y) =
|Sm−1|
|Sm|

√
λN
m
.(8.3)

Recalling the definition of cN given by (3.8), we conclude from (8.2) and (8.3) that∫
ΛpN

KN(x, y) dx dy ≤ m

2π

|Sm|2

|Sm−1|2

∫
ΛpN

ΥN(x, y) dx dy.

By the Triangle inequality, (7.1), Lemma 8.3, and direct computation, we conclude∣∣∣∣∣
∫

ΛpN

(KN(x, y)− 1) dx dy

∣∣∣∣∣ ≤ m

2π

|Sm|2

|Sm−1|2

∫
ΛpN

ΥN(x, y) dx dy +

∫
ΛpN

dx dy

≤ C
m

π

|Sm|3

|Sm−1|
1

Np(m−1)
+ 2|Sm||Sm−1| 1

Nmp

= O

(
1

Np(m−1)

)
.

The constant C in the second inequality is the same C that appears in Lemma 8.3.
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We can now concentrate on the integral over Λp
N .

Lemma 8.4. Uniformly for (x, y) ∈ Λp
N ,

KN(x, y) = 1 +O
(
N (p−1)(m+3

2
)+2
)
.

Again, we need a couple of lemmas.

Lemma 8.5. For N sufficiently large, R(Qx) ∩R(Qy) = 0 for all (x, y) ∈ Λp
N .

Proof. Fix x, y ∈ Sm, x 6= y. Define Bxy : T ∗xS
m → T ∗y S

m by

Bxy = dy ◦ Jx.

We know that R(Qx) ∩R(Qy) = 0 if and only if ‖Bxy‖ < cN . We want to show that

this happens for all (x, y) ∈ Λp
N for N sufficiently large.

Let U ⊂ Sm be a coordinate neighborhood. Let {X1, . . . , Xm} be an orthonormal

frame on U with corresponding orthonormal coframe {ω1, . . . , ωm}. Let {f1, . . . , fdN}

be an orthonormal basis of EN . Then by direct calculation we obtain

〈Bxyωj, ωk〉 =

dN∑
h=1

Xjfh(x)Xkfh(y).

Now

1

cN

dN∑
h=1

Xjfh(x)Xkfh(y)

=
m

λN
Xj(x)Xk(y)Pm+1

N (cos d(x, y))

=
m

λN
Xj(x)

(
−(Pm+1

N )′(cos d(x, y)) sin d(x, y)Xk(y)d(x, y)
)

=
m

λN

{
(Pm+1

N )′′(cos d(x, y)) sin2 d(x, y)Xj(x)d(x, y)Xk(y)d(x, y)

− (Pm+1
N )′(cos d(x, y)) cos d(x, y)Xj(x)d(x, y)Xk(y)d(x, y)

− (Pm+1
N )′(cos d(x, y)) sin d(x, y)Xj(x)Xk(y)d(x, y)

}
= O

(
N (p−1)(m+1

2
) +N (p−1)(m+3

2
)+2
)

= O

(
1

N (1−p)(m+3
2

)−2

)
,
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which decays since we required that

p < 1− 4

m+ 3
.

Lemma 8.6. Uniformly for (x, y) ∈ Λp
N ,∫

Q
|∇f(x)||∇f(y)| dµN |Q(f) = cN

(
|Sm−1|2

|Sm|2
+O

(
N (p−1)(m+3

2
)+2
))

.

Proof. Define τ : EN → R× R× T ∗xSm × T ∗y Sm by

τ(f) = (f(x), f(y), dfx, dfy).

By Lemma 8.5, τ is a surjective linear map for all sufficiently large N . Denote by

(s, t,u,v) the variables in

R× R× T ∗xSm × T ∗y Sm.

Choose coordinates as in Lemma 8.5, and write ∇x = (X1(x), . . . , Xm(x)). Using

the fact that the image of a Gaussian measure under a surjective linear map is again

Gaussian [16], we have∫
Q
|∇f(x)||∇f(y)| dµN |Q(f)

=
1

(2π)
dN
2

∫
RdN−2

|∇f(x)||∇f(y)|e−
1
2
‖f‖2 df

=
‖ΦN(x)‖L2‖ΦN(y)‖L2

ΥN(x, y)

1

(2π)
dN
2

× lim
ε→0

1

4ε2

∫
EN

I(f, ε; x)I(f, ε; y)|∇f(x)||∇f(y)|e−
1
2
‖f‖2 df

=
‖ΦN(x)‖L2‖ΦN(y)‖L2

ΥN(x, y)

1

(2π)m+1
√
|ΛN |

× lim
ε→0

1

4ε2

∫ ε

−ε

∫ ε

−ε

∫∫
‖u‖‖v‖

e−
1
2

(s,t,u,v)Λ−1
N (s,t,u,v)t du dv ds dt,

(8.4)
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where ΛN is the (2m+ 2)× (2m+ 2) block matrix given by

ΛN =

A B

Bt C

 ,

A =
dN
|Sm|

 1 Pm+1
N (cos d(x, y))

Pm+1
N (cos d(x, y)) 1


2×2

,

B =
dN
|Sm|

 0 ∇yP
m+1
N (cos d(x, y))

∇xP
m+1
N (cos d(x, y)) 0


2×(2m)

,

and

C =
dN
|Sm|

 λN
m
I Xj(x)Xk(y)Pm+1

N (cos d(x, y))

Xj(y)Xk(x)Pm+1
N (cos d(x, y)) λN

m
I


(2m)×(2m)

.

Here j is a row index and k is a column index, both ranging from 1 to m.

Taking the limit in (8.4), we obtain∫
Q
|∇f(x)||∇f(y)| dµN |Q(f) =

dN
|Sm|

1

ΥN(x, y)

1

(2π)m+1
√
|ΛN |

×∫∫
‖u‖‖v‖e−

1
2

(0,0,u,v)Λ−1
N (0,0,u,v)t du dv.

Here, and in what follows, we write |ΛN | for the determinant of a matrix—in this

case ΛN . We compute that

(0, 0,u,v)Λ−1
N (0, 0,u,v)t = (u,v)F−1

N (u,v)t,

where

FN = C −BtA−1B.(8.5)

We note that by Jacobi’s Theorem [16], |ΛN | = |A||FN |. Also,

√
|A| = dN

|Sm|
1

ΥN(x, y)
.
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Hence,

(8.6)

∫
Q
|∇f(x)||∇f(y)| dµN |Q(f) =

1

(2π)m+1
√
|FN |

∫∫
‖u‖‖v‖e−

1
2

(u,v)F−1
N (u,v)t du dv.

We now state the estimates we will need. So as to not destroy the continuity of

the current argument, we postpone the proofs. To facilitate notation, we will say that

a matrix if O(g(N)) if each of its entries is O(g(N)).

Lemma 8.7. Partition FN and F−1
N into m×m block matrices as

FN =

Q R

Rt S

 , F−1
N =

 T V

V t W

 .

The following estimates hold uniformly for all (x, y) ∈ Λp
N as N →∞:

1. 1√
|FN |

= c−mN

(
1 +O

(
N (p−1)(m+3

2
)+2
))

,

2. Q−1 = c−1
N

(
I +O

(
N (p−1)(m+1)+2

))
,

3. W = c−1
N

(
I +O

(
N (p−1)(m+3

2
)+2
))

; moreover, the same estimate holds for W−1

with c−1
N replaced by cN , and

4. V = c−1
N O

(
N (p−1)(m+3

2
)+2
)

.

Continuing, we note that A and C are symmetric matrices. Hence FN , and thus

W , is also symmetric. We have therefore

(u,v)F−1
N (u,v)t = (v + uVW−1)W (v + uVW−1)t + uQ−1ut.

In particular,

(8.7)

∫∫
‖u‖‖v‖e−

1
2

(u,v)F−1
N (u,v)t du dv =∫

‖u‖
{∫
‖v − uVW−1‖e−

1
2
vWvt dv

}
e−

1
2
uQ−1ut du.
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Now ∣∣‖v − uVW−1‖ − ‖v‖
∣∣ ≤ 2‖uVW−1‖‖v‖+ ‖uVW−1‖2

‖v − uVW−1‖+ ‖v‖

≤ 3‖uVW−1‖.
(8.8)

From (8.7), (8.8), Lemma 8.7.3, and Lemma 8.7.4, we have

(8.9)

∫∫
‖u‖‖v‖e−

1
2

(u,v)F−1
N (u,v)t du dv ={∫

‖u‖e−
1
2
uQ−1ut du

}{∫
‖v‖e−

1
2
vWvt dv

}
+ cm+1

N O
(
N (p−1)(m+3

2
)+2
)
.

We now calculate∣∣∣∣∫ ‖u‖e− 1
2
uQ−1ut du−

∫
‖u‖e−

1
2
c−1
N ‖u‖

2

du

∣∣∣∣
≤
∫
‖u‖e−

1
2
c−1
N ‖u‖

2
∣∣∣e− 1

2
c−1
N uO(Nq)ut − 1

∣∣∣ du
≤ c−1

N O(N q)

∫
‖u‖3e−

1
2
c−1
N (1+O(Nq))‖u‖2 du

= c
m+1

2
N O(N q),

(8.10)

where q = (p − 1)(m + 1) + 2. The first inequality follows from Lemma 8.7.2. The

second inequality follows from the easy estimate

|et − 1| ≤ |t|e|t|,

which is valid for all real t, and the final equality follows from direct computation.

Similarly, from Lemma 8.7.3 we can show∫
‖v‖e−

1
2
vWvt dv =

∫
‖v‖e−

1
2
c−1
N ‖v‖

2

dv + c
m+1

2
N O(N r),(8.11)

where r = (p− 1)(m+3
2

) + 2. Combining (8.9),(8.10), and (8.11), we have

(8.12)

∫∫
‖u‖‖v‖e−

1
2

(u,v)F−1
N (u,v)t du dv =

cm+1
N

(
|Sm−1|22m−1

(
Γ(m+1

2
)
)2

+O
(
N (p−1)(m+3

2
)+2
))

.

Lemma 8.6 now follows from (8.6), Lemma 8.7.1, and (8.12).
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For completeness, we now prove our estimates.

Proof (of Lemma 8.7). We first introduce some notation which will be used only in

this proof. Let

PN
def
=Pm+1

N (cos d(x, y)),

XjPN
def
=Xj(x)Pm+1

N (cos d(x, y)),

YjPN
def
=Xj(y)Pm+1

N (cos d(x, y)),

XjYkPN
def
=Xj(x)Xk(y)Pm+1

N (cos d(x, y)),

α
def
=

1

1−
(
Pm+1
N (cos d(x, y))

)2 .

We compute from (8.5) that

c−1
N Q = I − mα

λN

(
(XjPN)(XkPN)

)
.(8.13)

Here, and for the rest of the proof, j denotes a row index and k denotes a column

index, both running from 1 to m.

For (x, y) ∈ Λp
N , we have d(x, y) ≥ N−p. From Facts B.2.3 and B.2.4 in Appendix

B, we compute

|XjPN | =
∣∣∣(Pm+1

N

)′
(cos d(x, y)) sin d(x, y)Xj(x)d(x, y)

∣∣∣
≤ λN

m

∣∣Pm+3
N−1 (cos d(x, y))

∣∣
= O

(
N (p−1)(m+1

2
)+2
)
.

(8.14)

Also, we have

α = 1 +
(
Pm+1
N (cos d(x, y))

)2 1

1−
(
Pm+1
N (cos d(x, y))

)2

= 1 +O
(
N (p−1)(m−1)

)
,

(8.15)

where the error estimate follows from Fact B.2.4 and the observation that the fraction

in the last equality is uniformly bounded.
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Combining (8.13), (8.14), and (8.15), we conclude that

Q = cN
(
I +O

(
N (p−1)(m+1)+2

))
.(8.16)

The same estimate holds for the sub-block S via the same argument. The needed

estimate for Q−1 follows from (8.16) by the classical adjoint formula for inverses (cf.

Theorem 5.4 of [13]).

Also from (8.5), we have

c−1
N R =

(
m

λN
XjYkPN +

mα

λN
PN(XjPN)(YkPN)

)
= O

(
N (p−1)(m+3

2
)+2
)

+O
(
N (p−1)( 3m+1

2
)+2
)

= O
(
N (p−1)(m+3

2
)+2
)(8.17)

It follows immediately that

FN = cN

(
I +O

(
N (p−1)(m+3

2
)+2
))

,

and

F−1
N = c−1

N

(
I +O

(
N (p−1)(m+3

2
)+2
))

.

The needed estimate for V and W , and therefore for W−1 also, is then immediate.

To complete the proof, we observe that the estimate

1

|FN |
= |F−1

N | = c−2m
N

(
1 +O

(
N (p−1)(m+3

2
)+2
))

follows directly from the definition of the determinant. The required estimate for

|FN |−
1
2 then follows.

We now complete the proof of the main new lemma of this chapter.

Proof (of Lemma 8.4). We begin by noting that uniformly for (x, y) ∈ Λp
N , we have

ΥN(x, y) = 1 +O
(
N (p−1)(m−1)

)
.(8.18)
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This follows from (7.1), Fact B.2.4, and the following equality which holds for all real

|t| < 1:

1√
1− t2

= 1 +
t2√

1− t2(1 +
√

1− t2)
.

The present lemma now follows from (7.2), (8.18), and Lemma 8.6.

Combining Lemma 8.1 and Lemma 8.4, and optimizing over p, we obtain Propo-

sition 7.1. Note that the variance is bounded; it’s also summable for m > 5. We are

finally in a position to prove the main theorem of the work.

Proof (of Theorem 2.2). Part 2 follows immediately from Proposition 7.1 and Cheby-

shev’s inequality [14].

We will now prove part 1. Let ϕ be a continuous function on Sm. Let Bϕ ⊂ SE∞

be the set of all sequences {fN}, with fN ∈ SEN , such that

1

M

M∑
N=1

∫
Sm
ϕ dZ̃N

fN
9

∫
Sm
ϕ dσm

as M → ∞. By Proposition 7.1 and Kolmogorov’s Strong Law of Large Numbers

[14], Bϕ has µ∞-measure zero.

Let A be a countable L∞-dense subset of CR(Sm), the set of all real-valued contin-

uous function on Sm. Such a subset is constructed in Lemma C.1 found in Appendix

C. Define B to be the following union:

B def
=
⋃
ψ∈A

Bψ.

Since A is countable, B also has µ∞-measure zero.

Now take any real-valued continuous function ϕ on Sm. There exists a sequence

of elements of A, say ϕ1, ϕ2, . . . , such that

‖ϕ− ϕj‖L∞ ≤
1

j
.
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For any sequence {fN}, with fN ∈ SEN , which does not lie in B, we have∣∣∣∣∣ 1

M

M∑
N=1

∫
Sm
ϕ dZ̃N

fN
−
∫
Sm
ϕ dσm

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

M

M∑
N=1

∫
Sm
ϕ dZ̃N

fN
− 1

M

M∑
N=1

∫
Sm
ϕj dZ̃

N
fN

∣∣∣∣∣
+

∣∣∣∣∣ 1

M

M∑
N=1

∫
Sm
ϕj dZ̃

N
fN
−
∫
Sm
ϕj dσm

∣∣∣∣∣
+

∣∣∣∣∫
Sm
ϕj dσm −

∫
Sm
ϕ dσm

∣∣∣∣
≤ Cj−1

+

∣∣∣∣∣ 1

M

M∑
N=1

∫
Sm
ϕj dZ̃

N
fN
−
∫
Sm
ϕj dσm

∣∣∣∣∣
+ |Sm|j−1.

Here C is a uniform upper bound on (Z̃N
fN
, 1), the existence of which was shown in

[8]. We conclude therefore that

lim sup
M→∞

∣∣∣∣∣ 1

M

M∑
N=1

∫
Sm
ϕ dZ̃N

fN
−
∫
Sm
ϕ dσm

∣∣∣∣∣ ≤ (C + |Sm|)1

j
.

Part 1 now follows for all real-valued ϕ from the observation that this inequality holds

for all positive integers j. We finish by simply considering the real and imaginary

parts of an arbitrary continuous ϕ on Sm.

It remains to prove part 3. Denote an element of SE∞ by F = {fN}N≥0, with

fN ∈ SEN . Given a real continuous function ϕ on Sm, let Y N
ϕ (F) = (Z̃N

fN
− σm, ϕ)2.

Then
∞∑
N=0

∫
SE∞

Y N
ϕ (F) dµ∞(F) =

∞∑
N=0

VµN (Z̃N
fN
, ϕ) <∞.

In particular, for µ∞-almost all F ,

∞∑
N=0

Y N
ϕ (F) <∞,

and thus Y N
ϕ (F) → 0 as N → ∞. Since this holds for any real ϕ in a countable

L∞-dense subset of CR(Sm), we complete the proof as above.
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8.2 The Léray Nodal Measure

Explicitly, we have for any continuous function ϕ on Sm,∫
Sm
ϕ dδNf = lim

ε→0

1

2ε

∫
Sm
I(f, ε;x) dσm(x).

From this the second equality in Proposition 2.1 follows just as the first. The analogue

of Lemma 7.2 is then the following:

Lemma 8.8. For all continuous functions ϕ on Sm, we have∫
SEN

(δ̃Nf , ϕ)2 dµN(f) =

∫
Sm

∫
Sm
ϕ(x)ϕ(y)KN

δ (x, y) dx dy,

where

KN
δ (x, y) =

|SdN−1||SdN−3|
|SdN−2|2

ΥN(x, y).(8.19)

We note that

|SdN−1||SdN−3|
|SdN−2|2

= 1 +O

(
1

dN

)
= 1 +O

(
1

Nm−1

)
.

(8.20)

The following analogue of Proposition 7.1 also holds.

Proposition 8.9. For m fixed, we have the following estimate as N →∞:

VµN (δ̃Nf , ϕ) = O

(
‖ϕ‖2

L∞

N
m−1

2

)
.(8.21)

From this Theorem 2.3 follows.

Proof. By (8.19), (8.20), and Lemma B.4, we compute

VµN (δ̃Nf , 1) =

∫
Sm

∫
Sm

(ΥN(x, y)− 1) dx dy +O

(
1

Nm−1

)
.(8.22)

By (8.18), we have (for any p > 0)∫
ΛpN

(ΥN(x, y)− 1) dx dy = O
(
N (p−1)(m−1)

)
.(8.23)
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Just as in the proof of Lemma B.4, we have by direct computation

∫
ΛpN

(ΥN(x, y)− 1) dx dy =

2|Sm||Sm−1|
∫ 1

Np

0

 1√
1− (Pm+1

N (cosu))2

− 1

 sinm−1 u du.

By Lemma 8.3, we have∫
ΛpN

(ΥN(x, y)− 1) dx dy = O

(
1

Np(m−1)

)
.(8.24)

Choosing p = 1
2

and combining (8.22), (8.23), and (8.24), we obtain (8.21).

46



Chapter 9

Scaling Limits

Also of interest are the local statistics of random nodal sets, e.g., the scaling limits

of the two-point correlation functions KN(x, y) and KN
δ (x, y). To define the scaling

limits, we note first that both KN and KN
δ depend only on the distance d = d(x, y)

between x and y. For KN
δ this follows from (8.19), and for KN this follows from (7.2)

and the fact that spheres are two-point homogeneous spaces. We define the scaling

limits then to be

Ksc(d)
def
= lim

N→∞
KN

(
d

N

)
, and Ksc

δ (d)
def
= lim

N→∞
KN
δ

(
d

N

)
.

Roughly speaking, KN(x, y) can be thought of as the joint probability density that a

random eigenfunction fN ∈ SEN simultaneously vanishes in small neighborhoods of

x and y. We can view the scaling limits then as the limit distribution of these joint

probabilities rescaled to have a finite non-zero limit. Such scaling limits have been

computed in the analogous complex case in [3, 4].
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d

1.05

1.1

1.15

1.2

Figure 9.1: The scaling limit Ksc
δ (d) when m = 2 (dashed curve) and m = 5 (solid

curve)

9.1 The Léray Scaling Limit

Computing the scaling limit of KN
δ is straightforward. We use the following limit

which can be found in [25]:

lim
N→∞

Pm+1
N

(
cos

d

N

)
= Γ

(m
2

)(2

d

)m−2
2

Jm−2
2

(d),(9.1)

where Jη is the η-order Bessel function of the first kind. From (8.19), (8.20), (9.1),

and (7.1), it follows that

Ksc
δ (d) =

1√
1−

(
2
d

)m−2
[
Γ
(
m
2

)
Jm−2

2
(d)
]2
.(9.2)

See Figure 9.1, noting that the ordinate scale starts at 1.

9.2 The Riemannian Hypersurface Scaling Limit

In contrast to the previous computation, finding Ksc will in fact be quite difficult.

We will carry out the calculations only in the case m = 2. We begin by recalling from
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(7.2) and (8.6) that

(9.3) KN(x, y) =
1

2π3cN

ΥN(x, y)√
|FN |∫∫∫∫ √

u2
1 + u2

2

√
v2

1 + v2
2e
− 1

2
(u1,u2,v1,v2)F−1

N (u1,u2,v1,v2)t du1 du2 dv1 dv2,

where FN is defined in (8.5). We can interchange the limit and integral via the

Dominated Convergence Theorem. In fact, we will see in a moment that the scaling

limit (after suitable normalization) of F−1
N is positive definite, and as such there exists

a constant c, which may depend on d, such that the exponential in (9.3) is eventually

bounded above by

e−
1
2
c(u2

1+u2
2+v21+v22).

We now choose spherical coordinates (ϕ, θ) on S2, with cosϕ = z as usual. For

convenience, we choose 0 < ϕ < π, and −π < θ < π. Then{
∂

∂ϕ
,

1

sinϕ

∂

∂θ

}
is an orthonormal frame. We choose x to be the point (π

2
, 0), and y to be the point

(π
2
, d). Then in the scaling limit,

1

cN
FN → Y TY,(9.4)

where

Y =



α(d) 0 γ(d) 0

0 1 0 β(d)

0 0
√
α2(d)− γ2(d) 0

0 0 0
√

1− β2(d)


,

with

α(d) =

√
1− 2J2

1 (d)

1− J2
0 (d)

,

β(d) =
2J1(d)

d
,

γ(d) =
β(d) + J0(d)(α2(d)− 1)− J2(d)

α(d)
.
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Note that (9.4) implies that the scaling limit of 1
cN
FN is positive definite.

We now change variables in the integral in Ksc(d) by setting

u1

u2

v1

v2


= Y t



a

b

c

d


,

and then change again to spherical coordinates in R
4 (which should cause little con-

fusion with the spherical coordinates on S2) by

a = r sinϕ cosψ,

b = r cosϕ,

c = r sinϕ sinψ sin θ,

d = r sinϕ sinψ cos θ,

with 0 ≤ r ≤ ∞, 0 ≤ θ ≤ 2π, and 0 ≤ ϕ, ψ ≤ π. Integrating in r we obtain

(9.5) Ksc(d) =
4

π3

1√
1− J2

0 (d)∫ 2π

0

∫ π

0

∫ π

0

h(d, sinϕ cosψ, cosϕ, sinϕ sinψ sin θ, sinϕ sinψ cos θ)

sin2 ϕ sinψ dϕdψ dθ,

where

h(d, s, t, u, v) =√
t2 + s2α2(d)

√(
tβ(d) + v

√
1− β2(d)

)2

+
(
u
√
α2(d)− γ2(d) + sγ(d)

)2

.

We can then numerically graph Ksc(d) as in Figure 9.2.

For fixed η, the following well-known approximation holds as d→∞:

Jη(d) =

√
2

πd
cos
(
d− π

2
η − π

4

)
+O

(
1

d
3
2

)
.(9.6)
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Figure 9.2: The scaling limits Ksc(d) (dashed curve) and Ksc
δ (d) (solid curve) when

m = 2

We can conclude from (9.2) that

Ksc
δ (d) ≥ 1 + 2m−3

[
Γ
(m

2

)]2
(

1

d

)m−2

J2
m−2

2
(d)

= 1 +O

(
1

dm−1

)
,

as d → ∞. Moreover, by (9.6), the error term cannot be improved. Also, (9.5)

exhibits Ksc(d) as a product of the scaling limit of ΥN , given by

1√
1− J2

0 (d)
,

and an integral. It follows that Ksc will also have at best 1
d

decay. The slow decay of

the scaling limit correlation functions tells us that different points on the nodal sets

are strongly correlated and are not independent from one another.
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Appendix A

A Lemma on Spherical Integration

Lemma A.1. Let Sm ⊂ R
m+1, m ≥ 2, be the standard unit sphere with (non-

normalized) Lebesgue measure σm. Fix p, q ∈ Sm, p 6= q. Fix ε1, ε2 > 0. Let

A = {x ∈ Sm : |x · p| < ε1 and |x · q| < ε2},

where · represents the standard Euclidean inner product in R
m+1. Then for all con-

tinuous functions ϕ on Sm, we have

lim
(ε1,ε2)→(0,0)

1

4ε1ε2

∫
A

ϕ(x) dσ(x) =
1√

1− (cos d(p, q))2

∫
B

ϕ(x) dσ|B(x),

where

B = {x ∈ Sm : x · p = x · q = 0}.

In particular,

lim
(ε1,ε2)→(0,0)

1

4ε1ε2
σ(A) =

|Sm−2|√
1− (cos d(p, q))2

.

Proof. For simplicity of notation, we will prove the lemma in the case where ϕ ≡ 1.

The reader should have no difficulty modifying the proof to handle the general case. It

is clear also that we may assume d(p, q) ≤ π
2
, where d denotes distance as measured on

Sm. We write coordinates for x ∈ R
m+1 as x = (x1, . . . , xm+1), with p = (1, 0, . . . , 0)
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and q = (t,
√

1− t2, 0, . . . , 0), where t = cos d(p, q). We have then

x · p = x1,

x · q = x1t+ x2

√
1− t2.

For ε1, ε2 > 0, we have that x ∈ Sm is an element of A if and only if

−ε1 < x1 < ε1, and

−ε2 − x1t√
1− t2

< x2 <
ε2 − x1t√

1− t2
.

To find σm(A) we slice integrate in x1 and x2 to obtain

σm(A) = |Sm−2|
∫ ε1

−ε1

∫ ε2−x1t√
1−t2

−ε2−x1t√
1−t2

(√
1− x2

1 − x2
2

)m−3

dx2 dx1.

We now change variables in the inner integral by setting

v = x1t+ x2

√
1− t2.

Then

(A.1) σm(A) =

|Sm−2|
(
1− t2

)−m−2
2

∫ ε1

−ε1

∫ ε2

−ε2

(
(1− x2

1)(1− t2)− (v − x1t)
2
)m−3

2 dv dx1.

By the mean value theorem for integrals, we have

lim
(ε1,ε2)→(0,0)

1

4ε1ε2
σm(A) =

|Sm−2|√
1− t2

,

as desired.
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Appendix B

Legendre Polynomials

Fix an integer M ≥ 3. Define an inner product 〈 , 〉M on L2[−1, 1] by

〈f, g〉M =

∫ 1

−1

f(t)g(t)(1− t2)
M−3

2 dt.

Definition B.1. Let {PM
0 (t), . . . , PM

N (t), . . . } be the set of real polynomials uniquely

determined by the following requirements:

1. degreePM
N (t) = N ,

2. 〈PM
N (t), PM

N ′(t)〉M = 0 if N 6= N ′, and

3. PM
N (1) = 1.

We call PM
N (t) the N th Legendre polynomial of order M .

We collect some facts on Legendre polynomials which can be found in [12] and

[25].

Fact B.2. The following statements hold:

1. PM
N (−t) = (−1)NPM

N (t),

2. |PM
N (t)| < 1 for −1 < t < 1,
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3. d
dt
PM
N (t) = N(N+M−2)

M−1
PM+2
N−1 (t) for N ≥ 1,

4. PM
N (cos θ) = θ−

M−2
2 O

(
N−

M−2
2

)
, 0 < θ ≤ π, where the implied constant is

uniform in θ but depends on M , and

5. On Sm,

〈ΦN(x),ΦN(y)〉L2 = ΦN(x)(y) =
dN
|Sm|

Pm+1
N (cos d(x, y)),

where d(x, y) denotes the distance between x and y.

As a corollary of Corollary 3.3 taking f(x) to be ΦN(y)(x) properly normalized,

and applying Fact B.2.3, we have the following estimate.

Corollary B.3. For θ ∈ (0, π), we have

|Pm+3
N−1 (cos θ)| <

√
m

λN

1

sin θ
.

In the case m = 2, compare with (18) in III.10 of [22].

Recall from chapter 7 the definition of ΥN . We need to show for technical reasons

that ΥN ∈ L1(Sm × Sm).

Lemma B.4. For some C, independent of N , we have∫
Sm

∫
Sm

ΥN(x, y) dx dy ≤ C <∞

Proof. Fix x0 ∈ Sm. We have∫
Sm

∫
Sm

ΥN(x, y) dx dy =

∫
Sm

∫
Sm

1√
1−

(
Pm+1
N (cos d(x, y))

)2
dx dy

= |Sm|
∫
Sm

1√
1−

(
Pm+1
N (cos d(x0, y))

)2
dy

= 2|Sm||Sm−1|
∫ 1

0

(1− t2)
m−2

2

√
1− (Pm+1

N (t))2
dt

= 2|Sm||Sm−1|
∫ π

2

0

sinm−1 u√
1− (Pm+1

N (cosu))2
du,(B.1)

where t = cos u. The integrand in (B.1) is uniformly bounded in N by Lemma 8.3,

and the lemma follows.
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Appendix C

Separability

Let CR(Sm) denote the set of all real-valued continuous functions on Sm.

Lemma C.1. The space CR(Sm) is L∞-separable. By this we mean there exists a

countable L∞-dense subset of CR(Sm).

Proof. Throughout this proof, m will be fixed. We will construct the needed subset.

For each N ≥ 0, choose a basis {fN1 , . . . , fNdN} of EN . Let A be the union of all these

basis functions, i.e.,

A =
∞⋃
N=0

dN⋃
j=1

{fNj }.

Let AR be the algebra of all R-linear combinations of finite products of elements of

A. Let AQ ⊂ AR be the set of all Q-linear combinations of finite products of elements

of A.

Note that AQ is a countable set. Moreover, since Q is dense in R, we can easily see

that AQ is L∞-dense in AR. By the Stone-Weierstrass Theorem [21], AR is L∞-dense

in CR(Sm). Hence AQ is a countable L∞-dense subset of CR(Sm), as needed.
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and scaling of correlations between zeros. MSRI Preprint No. 1999-027.

[4] P. Bleher, B. Shiffman, and S. Zelditch. Universality and scaling of correlations

between zeros on complex manifolds. MSRI Preprint No. 1999-026.

[5] S.Y. Cheng. Eigenfunctions and nodal sets. Comment. Math. Helv., 51(1):43–55,

1976.

[6] D. DeTurck and W. Ziller. Minimal isometric immersions of spherical space forms

in spheres. Comment. Math. Helv., 67:428–458, 1992.

[7] M. doCarmo and N. Wallach. Minimal immersions of spheres into spheres. Ann.

of Math., 93(1):43–62, 1971.

[8] H. Donnelly and C. Fefferman. Nodal sets of eigenfunctions on Riemannian

manifolds. Invent. Math., 93(1):161–183, 1988.

57



[9] A. Edelman and E. Kostlan. How many zeros of a random polynomial are real?

Bull. Amer. Math. Soc. (N.S.), 32(1):1–37, 1995.

[10] H. Federer. Geometric Measure Theory. Springer, 1969.

[11] A. Gray. Tubes. Addison-Wesley Publishing Company, 1990.

[12] H. Groemer. Geometric Applications of Fourier Series and Spherical Harmonics.

Cambridge University Press, 1996.

[13] K. Hoffman and R. Kunze. Linear Algebra. Prentice-Hall, Inc., second edition,

1971.
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